3S INSTITUTE

JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | FOUNDATION | MHT-CET

09-April-2024 (Morning Batch) : JEE Main Paper

MATHEMATICS Section - A (Single Correct Answer)

- 1. Let the line L intersect the lines x 2 = -y = z 1, 2(x + 1) = 2(y 1) = z + 1 and be parallel to the line $\frac{x - 2}{3} = \frac{y - 1}{1} = \frac{z - 2}{2}$. Then which of the following points lies on L? (A) $\left(-\frac{1}{3}, 1, 1\right)$ (B) $\left(-\frac{1}{3}, 1, -1\right)$ (C) $\left(-\frac{1}{3}, -1, -1\right)$ (D) $\left(-\frac{1}{3}, -1, 1\right)$
- 2. The parabola $y^2 = 4x$ divides the area of the circle $x^2 + y^2 = 5$ in two parts. The area of the smaller part is equal to :
 - (A) $\frac{2}{3} + 5\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (B) $\frac{1}{3} + 5\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (C) $\frac{1}{3} + \sqrt{5}\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (D) $\frac{2}{3} + \sqrt{5}\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$

3. The solution curve, of the differential equation $2y\frac{dy}{dx} + 3 = 5\frac{dy}{dx}$, passing through the point (0, 1) is a conic,

whose vertex lies on the line :

- (A) 2x + 3y = 9 (B) 2x + 3y = -9
- (C) 2x + 3y = -6 (D) 2x + 3y = 6
- 4. A ray of light coming from the point P(1, 2) gets reflected from the point Q on the x-axis and then passes through the point R(4, 3). If the point S(h, k) is such that PQRS is a parallelogram, then hk² is equal to :
 (A) 80 (B) 90 (C) 60 (D) 70
- 5. Let $\lambda, \mu \in \mathbb{R}$. If the system of equations

 $3x + 5y + \lambda z = 3$ 7x + 11y - 9z = 2 $97x + 155y - 189z = \mu$

has infinitely many solutions, then $\mu + 2\lambda$ is equal to :

(A) 25 (B) 24 (C) 27 (D) 22 6. The coefficient of x^{70} in $x^2(1 + x)^{98} + x^3(1 + x)^{97} + x^4 (1 + x)^{96} + \dots + x^{54} (1 + x)^{45}$ is ${}^{99}C_p - {}^{46}C_q$. Then a possible value to p + q is :

 (A) 55
 (B) 61

 (C) 68
 (D) 83

7.	Let $\int \frac{2 - \tan x}{3 + \tan x} dx = \frac{1}{2} (\alpha x + \log_e \beta \sin x + \gamma \cos x) + C$, where C is the constant of integration. Then $\alpha + \frac{\gamma}{\beta}$								
	is equal to :								
	(A) 3	(B) 1	(C) 4	(D) 7					
8.	A variable line L p and B. The minim	basses through the point (um area of the triangle (3, 5) and intersects the posi DAB, where O is the origin,	tive coordinate axes at the points A is :					
	(A) 30	(B) 25	(C) 40	(D) 35					
9.	Let $ \cos\theta\cos(60 -$	$ -\theta \cos(60-\theta) \le \frac{1}{8}, \ \theta \in \mathbb{C}$	[0, 2π]						
	Then, the sum of a	all $\theta \in [0, 2\pi]$, where co	s30 attains its maximum v	alue, is :					
	(A) 9π	(B) 18π	(C) 6π	(D) 15π					
10.	Let $\overrightarrow{OA} = 2\overrightarrow{a}$ \overrightarrow{OB}	$\vec{k} = 6\vec{a} + 5\vec{b}$ and $\overrightarrow{OC} = 3\vec{b}$	where O is the origin. If	the area of the parallelogram with					
adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is 15 sq. units, then the area (in sq. units) of the quadrilateral OABC is equation in the second state of the									
	(A) 38	(B) 40	(C) 32	(D) 35					
		(v 1)						
11.	If the domain of the	the function $f(x) = \sin^{-1} \left(\frac{1}{2} - \frac{1}{2} \right)$	$\left(\frac{x-1}{2x+3}\right)$ is R – (α , β) then	$12\alpha\beta$ is equal to :					
	(A) 36	(B) 24	(C) 40	(D) 32					
12.	If the sum of serie	$s \frac{1}{1 \cdot (1+d)} + \frac{1}{(1+d)(1+2)}$	$\frac{1}{d}$ + + $\frac{1}{(1+9d)(1+10d)}$	is equal to 5, then 50d is equal to :					
	(A) 20	(B) 5	(C) 15	(D) 10					
13.	Let $f(x) = ax^3 + bx$	$x^2 + ex + 41$ be such that	f(1) = 40, $f(1) = 2$ and $f'(1)$) = 4. Then $a^2 + b^2 + c^2$ is equal to:					
	(A) 62	(B) 73	(C) 54	(D) 51					
14.	Let a circle passing through (2, 0) have its centre at the point (h, k). Let (x_c, y_c) be the point of intersection								
	of the lines $3x + 5y = 1$ and $(2 + c) x + 5c^2y = 1$. If $h = \lim_{c \to 1} x_c$ and $\lim_{c \to 1} y_c$, then the equation of the cir								
	is :								
	(A) $25x^2 + 25y^2$	-20x + 2y - 60 = 0	(B) $5x^2 + 5y^2 - 4x - 2y - 12 = 0$						
	(C) $25x^2 + 25y^2$	-2x+2y-60=0	(D) $5x^2 + 5y^2 - 5y^$	-4x + 2y - 12 = 0					
15.	The shortest dista	nce between the line $\frac{x}{4}$	$\frac{y+3}{-11} = \frac{y+7}{-11} = \frac{z-1}{5}$ and $\frac{x-5}{3}$	$\frac{y-9}{-6} = \frac{y-9}{1}$ is :					
	(A) $\frac{187}{\sqrt{563}}$	(B) $\frac{178}{\sqrt{563}}$	(C) $\frac{185}{\sqrt{563}}$	(D) $\frac{179}{\sqrt{563}}$					
16.	The frequency dis	tribution of the age of stu	udents in a class of 40 stud	ents is given below.					
		15 16	17 18	10 20					
	No. of Students	5 8	5 12	x y					
	If the mean deviation about the median is 1.25, then $4x + 5y$ is equal to								
	(A) 43	(B) 4	(C) 47	(D) 46					
S	3S INSTITUT	F							
	ED JEE MAIN NEET OLYMPIADS FOUNDATION	MKT-CET		FAGE NO. : (2)					

- 17. The solution of the differential equation $(x^2 + y^2)dx 5xy dy = 0$, y(1) = 0, is : (A) $|x^2 - 4y^2|^5 = x^2$ (B) $|x^2 - 2y^2|^6 = x$ (C) $|x^2 - 4y^2|^6 = x$ (D) $|x^2 - 2y^2|^5 = x^2$
- 18. Let three vectors $\vec{a} = \alpha \hat{i} + 4 \hat{j} + 2 \hat{k}$, $\vec{b} = 5 \hat{i} + 3 \hat{j} + 4 \hat{k}$, $\vec{c} = x \hat{i} + y \hat{j} + z \hat{k}$ from a triangle such that $\vec{c} = \vec{a} \vec{b}$ and the area of the triangle is $5\sqrt{6}$. If α is a positive real number, then $|\vec{c}|^2$ is : (A) 16 (B) 14 (C) 12 (D) 10

19. Let α , β be the roots of the equation $x^2 + 2\sqrt{2}x - 1 = 0$. The quadratic equation, whose roots are $\alpha^4 + \beta^4$

and
$$\frac{1}{10}(\alpha^6 - \beta^6)$$
, is:

- (A) $x^2 190x + 9466 = 0$
- (B) $x^2 195x + 9466 = 0$
- (C) $x^2 195x + 9506 = 0$
- (D) $x^2 180x + 9506 = 0$

20. Let $f(x) = x^2 + 9$, $g(x) = \frac{x}{x-9}$ and a = fog(10), b = gof(3). If e and 1 denote the eccentricity and the

length of the latus rectum of the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$, then $8e^2 + l^2$ is equal to :

- (A) 16
- (B) 8
- (C) 6
- (D) 12

SECTION-B

- 21. Let a, b and c denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked 1, 2, 3, 4. If the probability that $ax^2 + bx + c = 0$ has all real roots is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to
- 22. The sum of the square of the modulus of the elements in the set $\{z = a + ib : a, b \in Z, z \in C, |z-1| \le 1, |z-5| \le |z-5i|\}$ is _____.
- 23. Let the set of all positive values of Z, for which the point of local minimum of the function $(1 + x(\lambda^2 x^2))$

satifies
$$\frac{x^2 + x + 2}{x^2 + 5x + 6} < 0$$
, be (α, β) . Then $\alpha^2 + \beta^2$ is equal to _____.

24. Let

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^4 + 1}} - \frac{2n}{(n^2 + 1)\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 16}} - \frac{8n}{(n^2 + 4)\sqrt{n^4 + 16}} \right) + \dots + \frac{n}{\sqrt{n^4 + n^4}} - \frac{2n \cdot n^2}{(n^2 + n^2)\sqrt{n^4 + n^4}}$$
 be

 $\frac{\pi}{k}$, using only the principal values of the inverse trigonometric functions. Then k2 is equal to_____.

25. The remainder when 428²⁰²⁴ is divided by 21 is _____

PAGE No. : (3)

26. Let $f:(0, \pi) \to R$ be a function given by $f(x) = \begin{cases} \left(\frac{8}{7}\right)^{\frac{\tan 8x}{\tan 7x}}, & 0 < x < \frac{\pi}{2} \\ a - 8, & x = \frac{\pi}{2} \\ (1 + |\cot x|)^{\frac{b}{a}|\tan x|}, & \frac{\pi}{2} < x < \pi \end{cases}$

Where a, $b \in Z$. If f is continuous at $x = \frac{\pi}{2}$, then $a^2 + b^2$ is equal to _____.

- 27. Let A be a non-singular matrix of order 3. If det(3adj(2adj((det A)A))) = $3^{-13} \cdot 2^{-10}$ and det (3adj(2A)) = $2^m \cdot 3^n$, then |3m + 2n| is equal to _____.
- 28. Let the centre of a circle, passing through the point (0, 0), (1, 0) and touching the circle $x^2 + y^2 = 9$, be (h, k). Then for all possible values of the coordinates of the centre (h, k), $4(h^2 + k^2)$ is equal to_____.
- 29. If a function f satisfies f(m+n) = f(m) + f(n) for all m, $n \in N$ and f(1) = 1, then the largest natural number λ such that $\sum_{k=1}^{2022} f(\lambda + k) \le (2022)^2$ is equal to _____.
- 30. Let $A = \{2, 3, 6, 7\}$ and $B = \{4, 5, 6, 8\}$. Let R be a relation defined on $A \times B$ by (a, ...)
- 30. Let $A = \{2, 3, 6, 7\}$ and $B = \{4, 5, 6, 8\}$. Let R be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ is and only if $a_1 + a_2 = b_1 + b_2$. Then the number of elements in R is_____.

PHYSICS Section - A (Single Correct Answer)

- 31. A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as:
- (A) λ_e > λ_α > λ_p
 (B) λ_α < λ_p < λ_e
 (C) λ_p < λ_e < λ_α
 (D) λ_p > λ_e > λ_α
 32. A particle moving in a straight line covers half the distance with speed 6 m/s. The other half is covered in two equal time intervals with speeds 9 m/s and 15 m/s respectively. The average speed of the particle during the motion is :

(A) 8.8 m/s (B) 10 m/s (C) 9.2 m/s (D) 8 m/s

33. A plane EM wave is propagating along x direction. It has a wavelength of 4 mm. If electric field is in y direction with the maximum magnitude of 60 Vm⁻¹, the equation for magnetic field is:

(A)
$$B_z = 60 \sin\left[\frac{\pi}{2}(x - 3 \times 10^8 t)\right] \hat{k}T$$
 (B) $B_z = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 (x - 3 \times 10^8 t)\right] \hat{k}T$
(C) $B_x = 60 \sin\left[\frac{\pi}{2}(x - 3 \times 10^8 t)\right] \hat{i}T$ (D) $B_x = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 (x - 3 \times 10^8 t)\right] \hat{k}T$

34. Given below are two statements:

Statement (I): When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side.

Statement (II): Concave lens always forms a virtual and erect image.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Statement I is false but Statement II is true. (B) Both Statement I and Statement II are false.
- (C) Statement I is true but Statement II is false. (D) Both Statement I and Statement II are true.

PAGE No. : (4)

- 35. A light emitting diode (LED) is fabricated using GaAs semiconducting material whose band gap is 1.42 eV. The wavelength of light emitted from the LED is:
 - (A) 650 nm (B) 1243 nm (C) 875 nm (D) 1400 nm
- 36. A sphere of relative density σ and diameter D has concentric cavity of diameter d. The ratio of D/d, if it just floats on water in a tank is:

(A)
$$\left(\frac{\sigma}{\sigma-1}\right)^{\frac{1}{3}}$$
 (B) $\left(\frac{\sigma+1}{\sigma-1}\right)^{\frac{1}{3}}$ (C) $\left(\frac{\sigma-1}{\sigma}\right)^{\frac{1}{3}}$ (D) $\left(\frac{\sigma-2}{\sigma+2}\right)^{\frac{1}{3}}$

37. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. If the area of each stair is A/3 and the height is d, the capacitance of the arrangement is:

$$(A) \quad \frac{11\epsilon_0 A}{18d} \qquad (B) \quad \frac{13\epsilon_0 A}{17d} \qquad (C) \quad \frac{11\epsilon_0 A}{20d} \qquad (D) \quad \frac{18\epsilon_0 A}{11d}$$

- 38. A light unstretchable string passing over a smooth light pulley connects two blocks of masses m_1 and m_2 . If the acceleration of the system is g/8, then the ratio of the masses m_2/m_1 is :
 - (A) 9:7 (B) 4:3 (C) 5:3 (D) 8:1
- 39. The dimensional formula of latent heat is:
 - (A) $[M^0LT^{-2}]$ (B) $[MLT^{-2}]$ (C) $[M^0L^2T^{-2}]$ (D) $[ML^2T^{-2}]$
- 40. The volume of an ideal gas ($\gamma = 1.5$) is changed adiabatically from 5 litres to 4 litres. The ratio of initial pressure to final pressure is:

(A) 4/5 (B) 16/25 (C)
$$\frac{8}{5\sqrt{5}}$$
 (D) $\frac{2}{\sqrt{5}}$

41. The energy equivalent of 1g of substance is:

- (A) 11.2×10^{24} MeV (B) 5.6×10^{12} MeV (C) 5.6 eV (D) 5.6×10^{26} MeV
- 42. An astronaut takes a ball of mass m from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km. From earth's surface to the orbit, the change in total mechanical energy

of the ball is
$$x \frac{GM_em}{21R_e}$$
. The value of x is (take $R_e = 6370$ km):
(A) 11 (B) 9 (C) 12 (D) 10

43. Given below are two statements:

Statement (I): When currents vary with time, Newton's third law is valid only if momentum carried by the electromagnetic field is taken into account.

Statement (II) : Ampere's circuital law does not depend on Biot-Savart's law.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both Statement I and Statement II are false.(B) Statement I is true but Statement II is false.
- (C) Statement I is false but Statement II is true. (D) Both Statement I and Statement II are true.
- 44. A particle of mass m moves on a straight line with its velocity increasing with distance according to the equation $v = \alpha \sqrt{x}$, where α is a constant. The total work done by all the forces applied on the particle

during its displacement from x = 0 to x = d, will be:

(A)
$$\frac{m}{2\alpha^2 d}$$
 (B) $\frac{md}{2\alpha^2}$ (C) $\frac{m\alpha^2 d}{2}$ (D) $2m\alpha^2 d$

45. A galvanometer has a coil of resistance 200 Ω with a full scale deflection at 20 μ A. The value of resistance to be added to use it as an ammeter of range (0 – 20) mA is:

(A) 0.40 Ω
(B) 0.20 Ω
(C) 0.50 Ω
(D) 0.10 Ω
46. A heavy iron bar, of weight W is having its one end on the ground and the other on the shoulder of a person. The bar makes an angle θ with the horizontal. The weight experienced by the person is:

- (A) W/2 (B) W (C) $W \cos \theta$ (D) $W \sin \theta$
- 47. One main scale division of a vernier caliper is equal to m units. If nth division of main scale coincides with $(n + 1)^{th}$ division of vernier scale, the least count of the vernier caliper is:

(A)
$$\frac{n}{(n+1)}$$
 (B) $\frac{m}{(n+1)}$ (C) $\frac{1}{(n+1)}$ (D) $\frac{m}{n(n+1)}$

- 48. A bulb and a capacitor are connected in series across an ac supply. A dielectric is then placed between the plates of the capacitor. The glow of the bulb:
 - (A) increases (B) remains same (C) becomes zero (D) decreases The equivalent resistance between A and B is:
- 49. The equivalent resistance between A and B is:

(A) 18Ω (B) 25Ω (C) 27Ω (D) 19Ω 50. A sample of 1 mole gas at temperature T is adiabatically expanded to double its volume. If adiabatic

- constant for the gas is $\gamma = \frac{3}{2}$, then the work done by the gas in the process is:
 - (A) $RT\left[2-\sqrt{2}\right]$ (B) $\frac{R}{T}\left[2-\sqrt{2}\right]$ (C) $RT\left[2+\sqrt{2}\right]$ (D) $\frac{T}{R}\left[2+\sqrt{2}\right]$

SECTION - B

- 51. If \vec{a} and \vec{b} makes an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a} + \vec{b}| = \sqrt{2}|\vec{a} \vec{b}|$ for $|\vec{a}| = n|\vec{b}|$. The integer value of n is _____.
- 52. At the centre of a half ring of radius R = 10 cm and linear charge density 4n C m⁻¹, the potential is x π V. The value of x is _____.

- 53. A star has 100% helium composition. It starts to convert three ⁴He into one ¹²C via triple alpha process as ⁴He + ⁴He + ⁴He → ¹²C + Q. The mass of the star is 2.0 × 10³² kg and it generates energy at the rate of 5.808 × 10³⁰ W. The rate of converting these ⁴He to ¹²C is n × 10⁴² s⁻¹, where n is _____. [Take, mass of ⁴He = 4.0026 u, mass of ¹²C = 12 u]
- 54. In a Young's double slit experiment, the intensity at a point is $\left(\frac{1}{4}\right)^{th}$ of the maximum intensity, the minimum distance of the point from the central maximum is ______ μ m. (Given : $\lambda = 600$ nm, d = 1.0 mm, D = 1.0 m)
- 55. A string is wrapped around the rim of a wheel of moment of inertia 0.40 kgm² and radius 10 cm. The wheel is free to rotate about its axis. Initially the wheel is at rest. The string is now pulled by a force of 40 N. The angular velocity of the wheel after 10 s is x rad/s, where x is _____.
- 56. A square loop of edge length 2 m carrying current of 2 A is placed with its edges parallel to the x-y axis. A magnetic field is passing through the x-y plane and expressed as $\vec{B} = B_0 (1+4x)\hat{k}$, where $B_0 = 5$ T. The net magnetic force experienced by the loop is _____ N.
- 57. Two persons pull a wire towards themselves. Each person exerts a force of 200 N on the wire. Young's modulus of the material of wire is 1×10^{11} N m⁻². Original length of the wire is 2 m and the area of cross section is 2 cm². The wire will extend in length by _____ μ m.
- 58. When a coil is connected across a 20 V dc supply, it draws a current of 5 A. When it is connected across 20 V, 50 Hz ac supply, it draws a current of 4 A. The self inductance of the coil is _____ mH. (Take $\pi = 3$)
- 59. The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of 4 m, 2 ms⁻¹ and 16 ms⁻² at a certain instant. The amplitude of the motion is $\sqrt{x}m$ where x is _____.
- 60. The current flowing through the 1 Ω resistor is $\frac{n}{10}$ A. The value of n is _____.

CHEMISTRY

Section - A (Single Correct Answer)

61. The molar conductivity for electrolytes A and B are plotted against $C^{1/2}$ as shown below. Electrolytes A and B respectively are :

PAGE No. : (7)

(A) Weak electrolyte Weak electrolyte

- (B) Strong electrolyte Strong electrolyte
- (C) Weak electrolyte Strong electrolyte
- (D) Strong electrolyte Weak electrolyte
- 62. Methods used for purification of organic compounds are based on :
 - (A) Neither on nature of compound nor on the impurity present.
 - (B) Nature of compound only.

A

- (C) Nature of compound and presence of impurity.
- (D) Presence of impurity only.
- 63. In the following sequence of reaction, the major products B and C respectively are:

B

- (C) H_2O and NO_2 (D) NH_2^- and BF_3
- 66. The F⁻ ions make the enamel on teeth much harder by converting hydroxyapatite (the enamel on the surface of teeth) into much harder fluoroapatite having the formula.

(B) [3(Ca₂(PO₄)₂)Ca(OH)₂]
(D) [3(Ca₃(PO₄)₂).Ca(OH)₂]

- (A) $[3(Ca_3(PO_4)_2).CaF_2]$
- (C) $[3(Ca_3(PO_4)_3).CaF_2]$
- ANARCEO L SE MARIE I REFE I DIVINDADE I FONDATION I MITTE

67. Relative stability of the contributing structures is

68. Given below are two statements :

Statement (I) : The oxidation state of an element in a particular compound is the charge acquired by its atom on the basis of electron gain enthalpy consideration from other atoms in the molecule.

Statement (II) : $p\pi$ - $p\pi$ bond formation is more prevalent in second period elements over other periods.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (A) Both Statement I and Statement II are incorrect
- (B) Statement I is correct but Statement II is incorrect
- (C) Both Statement I and Statement II are correct
- (D) Statement I is incorrect but Statement II is correct

69. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R) Assertion (A) : $S_N 2$ reaction of $C_6 H_5 C H_2 Br$ occurs more readily than the $S_N 2$ reaction of $C H_3 C H_2 Br$. Reason (R) : The partially bonded unhybridized p-orbital that develops in the trigonal bipyramidal transition state is stabilized by conjugation with the phenyl ring.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (A) (A) is not correct but (R) is correct
- (B) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (C) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (D) (A) is correct but (R) is not correct
- 70. For the given compounds, the correct order of increasing pK_a value :

71. Given below are two statements : one is labelled as Assertion (A) : and the other is labelled as Reason (R). **Assertion (A) :** Both rhombic and monoclinic sulphur exist as S_8 while oxygen exists as O_2 .

Reason (R) : Oxygen forms $p\pi$ - $p\pi$ multiple bonds with itself and other elements having small size and high electronegativity like C, N, which is not possible for sulphur.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (A) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (C) (A) is correct but (R) is not correct.
- (D) (A) is not correct but (R) is correct.
- 72. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).
 Assertion (A): The total number of geometrical isomers shown by [Co(en)₂Cl₂]⁺ complex ion is three.
 Reason (R): [Co(en)₂Cl₂]⁺ complex ion has an octahedral geometry.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (A) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (B) (A) is correct but (R) is not correct.
- (C) (A) is not correct but (R) is correct.
- (D) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- 73. The electronic configuration of Cu(II) is 3d⁹ whereas that of Cu(I) is 3d¹⁰. Which of the following is correct ?
 - (A) Cu(II) is less stable
 - (B) Stability of Cu(I) and Cu(II) depends on nature of copper salts
 - (C) Cu(II) is more stable
 - (D) Cu(I) and Cu(II) are equally stable

What is the structure of C?

PAGE No. : (10)

75. Compare the energies of following sets of quantum numbers for multielectron system.

(A) n=4, 1=1 (B) n=4, 1=2 (C) n=3, 1=1 (D) n=3, 1=2(E) n=4, 1=0

Choose the correct answer from the options given below :

- (A) (B) > (A) > (C) > (E) > (D) (B) (E) > (C) < (D) < (A) < (B)
- (C) (E) > (C) > (A) > (D) > (B) (D) (C) < (E) < (D) < (A) < (B)
- 76. Identify major product "X" formed in the following reaction :

77. Identify the product A and product B in the following set of reactions.

(B) A-CH₃CH₂CH₂ – OH, B – CH₃CH – CH₃
$$|$$

OH

(C)
$$A-CH_3 - CH - CH_3, B - CH_3CH_2CH_2 - OH$$
 (D) $A-CH_3CH_2CH_3, B-CH_3CH_2CH_3$
|
OH

78. On reaction of Lead Sulphide with dilute nitric acid which of the following is not formed ?

(A) Lead nitrate (B) Sulphur (C) Nitric oxide (D) Nitrous oxide

- 79. Identify the incorrect statements regarding primary standard of titrimetric analysis
 - (A) It should be purely available in dry form.
 - (B) It should not undergo chemical change in air.
 - (C) It should be hygroscopic and should react with another chemical instantaneously and stoichiometrically.
 - (D) It should be readily soluble in water.
 - (E) $KMnO_4$ & NaOH can be used as primary standard.

Choose the correct answer from the options given below :

(

(A) (C) and (D) only

- (B) (B) and (E) only
- (C) (A) and (B) only (D) (C) and (E) only
- 80. $0.05M \text{ CuSO}_4$ when treated with $0.01M \text{ K}_2\text{Cr}_2\text{O}_7$ gives green colour solution of $\text{Cu}_2\text{Cr}_2\text{O}_7$. The [SPM : Semi Permeable Membrane]

$$\begin{array}{c|c}
 K_2 Cr_2 O_7 & CuSO_4 \\
 Side X & SPM & Side Y
 \end{array}$$

Due to osmosis:

- (A) Green colour formation observed on side Y.
- (B) Green colour formation observed on side X.
- (C) Molarity of $K_2Cr_2O_7$ solution is lowered. (D) Molarity of $CuSO_4$ solution is lowered.

Section - B (Numerical Value Type)

- 81. The heat of solution of anhydrous $CuSO_4$ and $CuSO_4.5H_2O$ are -70 kJ mol^{-1} and $+12 \text{ kJ mol}^{-1}$ respectively. The heat of hydration of $CuSO_4$ to $CuSO_4.5H_2O$ is -x kJ. The value of x is _____.
- 82. Given below are two statements :

Statement I : The rate law for the reaction $A + B \rightarrow C$ is rate $(r) = k[A]^2[B]$. When the concentration of both A and B is doubled, the reaction rate is increased "x" times.

Statement II :

The figure is showing "the variation in concentration against time plot" for a "y" order reaction.

The value of x + y is _____

83. How many compounds among the following compounds show inductive, mesomeric as well as hyperconjugation effects?

84. The standard reduction potentials at 298 K for the following half cells are given below :

 $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O, E^{O} = 1.33V$ Fe³⁺ (aq) + 3e⁻ \rightarrow Fe E^o = -0.04V Ni²⁺ (aq) + 2e- \rightarrow Ni E^o = -0.25V

PAGE No. : (12)

 $\begin{array}{ll} \operatorname{Ag^{+}}\left(aq\right) + e^{-} \rightarrow \operatorname{Ag} & \operatorname{E^{\circ}} = 0.80 \mathrm{V} \\ \operatorname{Au^{3+}}\left(aq\right) + 3e^{-} \rightarrow \mathrm{Au} & \operatorname{E^{\circ}} = 1.40 \mathrm{V} \end{array}$

Consider the given electrochemical reactions, The number of metal(s) which will be oxidized be $Cr_2O_7^{2-}$, in aqueous solution is _____.

- 85. When equal volume of 1M HCl and 1M H₂SO₄ are separately neutralised by excess volume of 1M NaOH solution. X and y kJ of heat is liberated respectively. The value of y/x is_____.
- 86. Molarity (M) of an aqueous solution containing x g of anhyd. $CuSO_4$ in 500 mL solution at 32 °C is 2×10^{-1} M. Its molality will be _____ $\times 10^{-3}$ m. (Nearest integer). [Given density of the solution = 1.25 g/mL.]
- 87. The total number of species from the following in which one unpaired electron is present, is _____.

 $N_2, O_2, C_2^-, O_2^{2-}, H_2^+, CN^-, He_2^+$

88. Number of ambidentate ligands among the following is______

NO₂⁻,SCN⁻,C₂O₄²⁻,NH₃,CN⁻,SO₄²⁻,H₂O

- 89. Total number of essential amino acid among the given list of amino acids is ______. Arginine, Phenylalanine, Aspartic acid, Cysteine, Histidine, Valine, Proline
- 90. Number of colourless lanthanoid ions among the following is ______. Eu³⁺, Lu³⁺, Nd³⁺, La³⁺, Sm³⁺

• • •

JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | FOUNDATION | MHT-CET

09-April-2024 (Morning Batch) : JEE Main Paper

MATHEMATICS

Single Choice Correct											
	1.	В	2.	A	3.	A	4.	D	5.	А	
	6.	D	7.	С	8.	А	9.	С	10.	D	
	11.	D	12.	В	13.	D	14.	А	15.	А	
	16.	В	17.	А	18.	В	19.	С	20.	В	
Numer	rical	Value									
	21.	19	22.	9	23.	39	24.	32	25.	1	
	26.	81	27.	14	28.	9	29.	1010	30.	25	
					DIII/O						
	PHYSICS										
	Singl	e Choice Cor	rect								
	31.	В	32.	D	33.	В	34.	A OR B	35.	С	
	36.	А	37.	А	38.	А	39.	С	40.	С	
	41.	D	42.	А	43.	В	44.	С	45.	В	
	46.	А	47.	В	48.	А	49.	D	50.	А	
	Nume	erical Value									
	51.	3	52.	36	53.	5 OR 15	54.	200	55.	100	
	56.	160	57.	20	58.	10	59.	17	60.	25	
CHEMISTRY											
Single	Choi	ce Correct									
	61.	С	62.	C	63.	A	64.	A	65.	A	

Single Cho	ice Correct								
61.	С	62.	С	63.	А	64.	А	65.	А
66.	1	67.	В	68.	D	69.	С	70.	D
71.	С	72.	С	73.	С	74.	А	75.	D
76.	С	77.	С	78.	D	79.	D	80.	D
Numerical	Value								
81.	82	82.	8	83.	4	84.	3	85.	2
86.	164	87.	4	88.	3	89.	4	90.	2

