08-April-2024 (Morning Batch): JEE Main Paper

MATHEMATICS

Section - A (Single Correct Answer)

		1
1.	The value of $k \in \mathbb{N}$ for which the integral I_n	$\int (1-x^k)^n dx$, $n \in \mathbb{N}$, satisfies 147 $I_{20} = 148 I_{21}$ is
		0

- (A) 10
- (B) 8

- (C) 14
- (D) 7
- 2. The sum of all the solutions of the equation $(8)^{2x} 16 \cdot (8)^x + 48 = 0$ is :
 - (A) $1 + \log_6(8)$
- (B) $\log_{9}(6)$
- (C) $1 + \log_{8}(6)$
- $(D) \log_{2}(4)$

3. Let the circles
$$C_1: (x-\alpha)^2 + (y-\beta)^2 = r_1^2$$
 and $C_2: (x-8)^2 + \left(y-\frac{15}{2}\right)^2 = r_2^2$ touch each other externally at the point $(6, 6)$. If the point $(6, 6)$ divides the line segment joining the centres of the circles C_1 and C_2 internally in the ratio $2: 1$, then $(\alpha + \beta) + 4(r_1^2 + r_2^2)$ equals

- (A) 110
- (B) 130
- (C) 125
- (D) 145
- 4. Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from the x-axis is:
 - (A) $\gamma \sqrt{1-\sin^2\phi\cos^2\theta}$

(B) $\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$

(C) $\gamma \sqrt{1-\sin^2\theta\cos^2\phi}$

- (D) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$
- 5. The number of critical points of the function $f(x) = (x-2)^{2/3} (2x + 1)$ is:
 - (A) 2

(B) = 0

- (C)
- (D) 3
- 6. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is $e^{-a} + 4a^2 + a 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is:
 - (A) $(8e^x 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

(B) $(8e^x + 1)\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$

(C) $(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

- (D) $(8e^x 1)\frac{d^2y}{dx^2} \frac{dy}{dx} = 0$
- 7. Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x 10$. The number of points of local maxima of f in interval $(0, 2\pi)$ is:
 - (A) 1
- (B) 2

- (C) 3
- (D) 4
- 8. Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 A 21I$, where I is the identity matrix of order 3×3 , then 2a + 3b is

equal to:

- (A) -10
- (B) -13
- (C) -9
- (D) -12

9. If the shortest distance between the lines

$$L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}, \ \lambda \in \mathbb{R}$$

$$L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \ \mu \in \mathbb{R}$$

is $\frac{m}{\sqrt{n}}$, where gcd (m, n) = 1, then the value of m + n equals

- (A) 384
- (B) 387
- (C) 377
- (D) 390
- 10. Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest positive product, is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m equals :
 - (A) 9
- (B) 11

- (C) 8
- (D) 10
- 11. If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80(\tan^2 x \cos x)$ is equal to :

- (D) 19
- 12. Let $I(x) = \int \frac{6}{\sin^2 x (1 \cot x)^2} dx$. If I(0) = 3, then $I\left(\frac{\pi}{12}\right)$ is equal to :
- (B) $3\sqrt{3}$
- (C) $6\sqrt{3}$
- (D) $2\sqrt{3}$
- 13. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x 2y = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2:1. The equation of the side BC is:
 - (A) x 6y 10 = 0 (B) x 3y 6 = 0 (C) x + 3y + 2 = 0 (D) x + 6y + 6 = 0

- 14. Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and $f: A \to \mathbb{Z}$ be the function $f(x) = \left| \log_2 \left(x^2 + \left\lceil \frac{x^3}{5} \right\rceil \right) \right|$. The number of one-to-one functions from A to the range of f is:
 - (A) 20
- (B) 120
- (C) 25
- (D) 24
- 15. Let z be a complex number such that |z + 2| = 1 and $Im\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$. Then the value of $|Re\left(\overline{z+2}\right)|$ is :
 - (A) $\frac{\sqrt{6}}{5}$
- (B) $\frac{1+\sqrt{6}}{5}$ (C) $\frac{24}{5}$ (D) $\frac{2\sqrt{6}}{5}$
- 16. If the set $R = \{(a, b); a + 5b = 42, a, b \in \mathbb{N}\}$ has m elements and $\sum_{n=1}^{m} (1 + i^{n!}) = x + iy$, where $I = \sqrt{-1}$, then the value of m + x + y is:
 - (A) 8

(B) 12

(C) 4

(D) 5

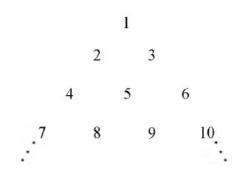
- 17. For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements
 - (S1) f(x) = 0 for only one value x is $[0, \pi]$.
 - **(S2)** f(x) is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.
 - (A) Both (S1) and (S2) are correct
 - (B) Only (S1) is correct
 - (C) Both (S1) and (S2) are incorrect
 - (D) Only (S2) is correct
- 18. The set of all α , for which the vector $\vec{a} = \alpha t \hat{i} + 6 \hat{j} 3 \hat{k}$ and $\vec{b} = t \hat{i} 2 \hat{j} 2 \alpha t \hat{k}$ are inclined at an obtuse aangle for all $t \in \mathbb{R}$ is:
 - (A) [0,1)

(B) (-2, 0]

(C) $\left[-\frac{4}{3}, 0\right]$

- (D) $\left(-\frac{4}{3}, 1\right)$
- 19. Let y = y(x) be the solution of the differential equation $(1 + y^2)e^{\tan x} dx + \cos^2 x(1 + e^{2\tan x})dy = 0$, y(0) = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to :
 - (A) $\frac{2}{e}$

(B) $\frac{1}{e^2}$


(C) $\frac{1}{e}$

- (D) $\frac{2}{e^2}$
- 20. Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to:
 - (A) 170
- (B) 171
- (C) 169
- (D) 172

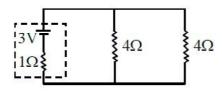
SECTION-B

- 21. Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the digonal elements of A^{13} is 3^n , then n is equal to _____.
- 22. If the orthocentre of the triangle formed by the lines 2x + 3y 1 = 0, x + 2y 1 = 0 and ax + by 1 = 0, is the centroid of another triangle, whose circumscentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a b| is
- 23. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and Yellow balls. If \overline{X} and \overline{Y} are the means of X and Y respectively, then $7\overline{X} + 4\overline{Y}$ is equal to_____.
- 24. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to_____.

25. Let the positive integers be written in the form:

If the kth row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is

- 26. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to _____.
- 27. Let $\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$ and $\beta = \left(\sum_{r=0}^{n} \frac{{}^n C_r}{r+1}\right) + \frac{1}{n+1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then the value of n is _____.
- 28. Let $\vec{a} = 9\hat{i} 13\hat{j} + 25\hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} 13\hat{k}$ and $\vec{c} = 17\hat{i} 2\hat{j} + \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _____.
- 29. Let the area of the region enclosed by the curve $y = \min\{\sin x, \cos x\}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to
- 30. The value of $\lim_{x\to 0} 2\left(\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}.....\sqrt[10]{\cos 10x}}{x^2}\right)$ is _____.


PHYSICS

Section - A (Single Correct Answer)

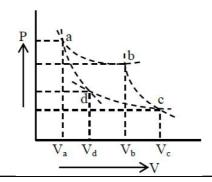
- 31. Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is:
 - (A) $1:\sqrt{3}:2$
- $1 \cdot \sqrt{3} \cdot \sqrt{2}$ (B)
- $\sqrt{2}\cdot\sqrt{3}\cdot 1$ (C)
- (D) $\sqrt{3} \cdot \sqrt{2} \cdot 1$
- 32. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:
 - (A) 0.2 m^2
- (B) 0.02 m^2
- (C)
- (D) 0.1 m^2
- 33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is: (Assume h = $6.63 \times 10^{-34} \, \text{J s}$, me = $9.0 \times 10^{-31} \, \text{kg}$ and m_p = $1836 \, \text{times m}_{e}$)
 - (A) 1:1836
- (B) $1:\frac{1}{1836}$ (C) $1:\frac{1}{\sqrt{1836}}$
- (D) $1:\sqrt{1836}$

- 34. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:
 - (A) 7/5
- (B) 3/2
- (C) 3/5
- (D) 5/3

- 35. In an expression $a \times 10^b$:
 - (A) a is order of magnitude for $b \le 5$
- (B) b is order of magnitude for $a \le 5$
- (C) b is order of magnitude for $5 < a \le 10$
- (D) b is order of magnitude for $a \ge 5$
- 36. In the given circuit, the terminal potential difference of the cell is:

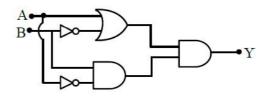
- (A) 2 V
- (B) 4 V
- (C) 1.5 V
- (D) 3 V
- 37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
 - (A) $0.2 \mu g$
- (B) 20 μg
- (C) $2 \mu g$
- (D) 10 μg

- 38. Paramagnetic substances:
 - A. align themselves along the directions of external magnetic field.
 - B. attract strongly towards external magnetic field.
 - C. has susceptibility little more than zero.
 - D. move from a region of strong magnetic field to weak magnetic field.


Choose the **most appropriate** answer from the options given below:

- (A) A, B, C, D
- (B) B, D Only
- (C) A, B, C Only
- (D) A, C Only
- 39. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):
 - (A) 139.4
- (B) 140.5
- (C) 220.0
- (D) 118.9
- 40. Young's modulus is determined by the equation given by $Y = 49000 \frac{\text{m}}{l} \frac{\text{dyn}}{\text{cm}^2}$ where M is the mass and l is

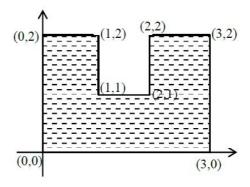
the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M-l plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and l are 500 g and 2 cm respectively then percentage error of Y is:


- (A) 0.2 %
- (B) 0.02 %
- (C) 2 %
- (D) 0.5 %
- 41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram.

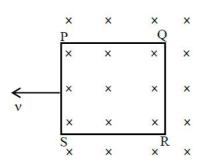
The relation between the ratio $\frac{V_a}{V_d}$ and the ratio $\frac{V_b}{V_c}$ is:

- (A) $\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}$ (B) $\frac{V_a}{V_d} \neq \frac{V_b}{V_c}$ (C) $\frac{V_a}{V_d} = \frac{V_b}{V_c}$ (D) $\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$
- 42. Two planets A and B having masses m₁ and m₂ move around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is:
 - (A) $\left(\frac{\mathbf{r}_2}{\mathbf{r}}\right)^{\frac{3}{2}}$
- (B) $\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3$ (C) $\frac{1}{27}\left(\frac{\mathbf{m}_2}{\mathbf{m}_1}\right)^3$ (D) $27\left(\frac{\mathbf{m}_1}{\mathbf{m}_2}\right)^3$
- 43. A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:
- double
- (C) same
- (D) halved

44. The output Y of following circuit for given inputs is:

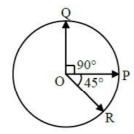

- (A) $A \cdot B(A + B)$
- (B) A•B
- (C) 0
- (D) •B
- 45. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
 - (A) \sqrt{ab}
- (C) $\frac{a}{b}$
- (D) $\frac{b}{a}$
- Correct Bernoulli's equation is (symbols have their usual meaning):
 - (A) $P + mgh + \sqrt{mv^2} = constant$
- (B) $P + \rho gh + \frac{1}{2} \rho v^2 = constant$
- (C) $P + \rho gh + \rho v^2 = constant$

- (D) $P + \frac{1}{2} \rho gh + \frac{1}{2} \rho v^2 = constant$
- 47. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 - (A) 150 N
- (B) 3 N
- (C) 30 N
- 48. A stationary particle breaks into two parts of masses mA and mB which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_{\rm B}:K_{\rm A})$ is :
 - $(A) v_B : v_A$
- $m_B : m_A$
- (C) $m_B v_B : m_A v_A$
- (D)
- 49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
 - (A) $\sqrt{2}:1$
- (B) 1:2
- (C) $1:\sqrt{2}$
- (D) 2:1


- 50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:
 - (A) 2.5 g/cm^3
- (B) 1.7 g/cm^3
- (C) 2.2 g/cm^3
- (D) 2.0 g/cm^3

SECTION - B

51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in n/9. The value of n is


- 52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μ T perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is ______ NC⁻¹. (Given, mass of electron = 9 × 10^{-31} kg, electric charge = 1.6×10^{-19} C)
- 53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is _____× 10⁻⁶ J.

- 54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10 Ω , 10.2 Ω and 10.95 Ω respectively. The temperature t in Kelvin scale is_____.
- 55. An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector

$$\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right).$$
 The electric flux for that surface is _____ V m.

- 56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is cm. (if $g = 10 \text{ ms}^{-2}$)
- 57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____.
- 58. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is _____.

- 59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be $___$ × 10^{-3} rad.
- 60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____ × 10^5 m/s approximately. ($\frac{1}{4\pi \epsilon_0} = 9 \times 10^9$ SI unit, mass of α particle = 6.72×10^{-27} kg)

CHEMISTRY

Section - A (Single Correct Answer)

61. Given below are two statements:

IUPAC name of Compound A is 4-chloro-1, 3 -dinitrobenzene:

IUPAC name of Compound B is 4-ethyl-2-methylaniline.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (A) Both Statement I and Statement II are correct
- (B) Statement I is incorrect but Statement II is correct
- (C) Statement I is correct but Statement II is incorrect
- (D) Both Statement I and Statement II are incorrect

62. Which among the following compounds will undergo fastest S_N^2 reaction.

- 63. Combustion of glucose ($C_6H_{12}O_6$) produces CO_2 and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is: [Molar mass of glucose in g mol⁻¹ = 180]
 - (A) 480
- (B) 960
- (C) 800
- (D) 32
- 64. Identify the major products A and B respectively in the following set of reactions.

$$B \xleftarrow{CH_3COC1} OH \xrightarrow{CH_3} \frac{Conc. H_2SO_4}{\Delta} A$$

(A)
$$A = \bigcirc CH_3$$
 and $B = \bigcirc CH_3$ OCOCH₃

(B)
$$A = CH_3$$
 and $B = CH_3$ OH

(C)
$$A = \bigcirc^{CH_2}$$
 and $B = \bigcirc^{CH_3}$ COCH₃

(D)
$$A = \bigcap^{CH_2} \text{and} \quad B = \bigcap^{CH_3} OH \\ COCH_3$$

65. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion A: The stability order of +1 oxidation state of Ga, In and Tl is Ga < In < Tl.

Reason R: The inert pair effect stabilizes the lower oxidation state down the group.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A.
- (B) A is true but R is false.
- (C) Both A and R are true but R is NOT the correct explanation of A.
- (D) A is false but R is true.
- 66. Match List-II with List-II

List - I	List - II
(Name of the test)	(Reaction sequence involved [M is metal]
A. Borax bead test	I. $MCO_3 \rightarrow MO \xrightarrow{Co(NO_3)} CoO.MO$
B. Charcoal cavity test	II. $MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$
C. Cobalt nitrate test	$III.MSO_4 \xrightarrow{Na_2B_4O_7} M(BO_2)_2 \to MBO_2 \to M$
D. Flame test	IV. $MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow MO \rightarrow M$

Choose the correct answer from the option below:

(A) A-III, B-I, C-IV, D-II

(B) A-III, B-II, C-IV, D-I

(C) A-III, B-I, C-II, D-IV

(D) A-III, B-IV, C-I, D-II

67. Match List-I and with List-II

List - I (Molecule)	List - II (Shape)			
A. NH ₃	I. Square pyramid			
B. BrF ₅	II. Tetrahedral			
C. PCl ₅	III. Trigonal pyramidal			
D. CH ₄	IV. Trigonal bipyramidal			

Choose the correct answer from the option below:

(A) A-IV, B-III, C-I, D-II

(B) A-II, B-IV, C-I, D-III

(C) A-III, B-I, C-IV, D-II

(D) A-III, B-IV, C-I, D-II

68. For the given hypothetical reactions, the equilibrium constants are as follows:

$$X \rightleftharpoons Y$$
; $K_1 = 1.0$

$$Y \rightleftharpoons Z$$
; $K_2 = 2.0$

$$Z \rightleftharpoons W$$
; $K_3 = 4.0$

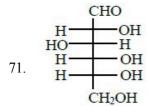
The equilibrium constant for the reaction $X \rightleftharpoons W$ is

- (A) 6.0
- (B) 12.0
- (C) 8.0
- (D) 7.0

69. Thiosulphate reacts differently with iodine and bromine in the reaction given below:

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

$$S_2O_3^{2-} + 5Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 4Br^- + 10H^+$$

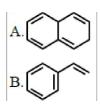

Which of the following statement justifies the above dual behaviour of thiosulphate?

- (A) Bromine undergoes oxidation and iodine undergoes reduction by iodine in these reactions.
- (B) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reaction
- (C) Bromine is a stronger oxidant than iodine
- (D) Bromine is a weaker oxidant than iodine

70. An octahedral complex with the formula $CoCl_3nNH_3$ upon reaction with excess of AgNO₃ solution given 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is_____.

- (A) 3
- (B) 6

- (C) 8
- (D) 5


The incorrect statement regarding the given structure is


- (A) Can be oxidized to a dicarboxylic acid with Br₂ water
- (B) despite the presence of CHO does not give Schiff's test
- (C) has 4-asymmetric carbon atom
- (D) will coexist in equilibrium with 2 other cyclic structure

72. In the given compound, the number of 2° carbon atom/s is

- (A) Three
- (B) One
- (C) Two
- (D) Four

73. Which of the following are aromatic?

- (A) B and D only
- (B) A and C only
- (C) A and B only (D) C and D only
- 74. Among the following halogens F₂, Cl₂, Br₂ and I₂

Which can undergo disproportionation reaction?

(A) Only I,

(B) Cl_2 , Br_2 and I_2

(C) F_2 , Cl_2 and Br_2

(D) F₂ and Cl₂

75. Given below are two statements:

Statement I : $N(CH_3)_3$ and $P(CH_3)_3$ can act as ligands to form transition metal complexes.

Statement II: As N and P are from same group, the nature of bonding of N(CH₃)₃ and P(CH₃)₃ is always same with transition metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (A) Statement I is incorrect but Statement II is correct
- (B) Both Statement I and Statement II are correct
- (C) Statement I is correct but Statement II is incorrect
- (D) Both Statement I and Statement II are incorrect
- 76. Match List I with List II

L	List-I (Elements)		List-II (Properties in their respective groups)
A Cl,S I.			Element with highest electronegativity
B.	Ge, As	II.	Elements with largest atomic size
C.	C. Fr,Ra		Elements which show properties of both metals and non metal
D.	F, O	IV.	Elements with highest negative electron gain enthalpy

Choose the correct answer from the options given below:

(A) A-II, B-III, C-IV, D-I

(B) A-III, B-II, C-I, D-IV

(C) A-IV, B-III, C-II, D-I

- (D) A-II, B-I, C-IV, D-III
- 77. Iron (III) catalyses the reaction between iodide and persulphate ions, in which
 - Fe³⁺ oxidises the iodide ion

B. Fe³⁺ oxidises the persulphate ion

Fe²⁺ reduces the iodide ion

D. Fe²⁺ reduces the persulphate ion

Choose the most appropriate answer from the options given below:

- (A) B and C only
- (B) B only
- (C) A only
- (D) A and D only

78. Match List-I with List-II

	List-I (Compound)	List-II (Colour)			
A	$Fe_4[Fe(CN)_6]_3.xH_2O$	I.	Violet		
B.	[Fe(CN ₅ NOS] ⁴⁻	II.	Blood Red		
C.	[Fe(SCN)] ²⁺	III.	Prussian Blue		
D.	(NH ₄)3PO ₄ .12MoO ₃	IV.	Yellow		

Choose the correct answer from the options given below:

(A) A-III, B-I, C-II, D-IV

(B) A-IV, B-I, C-II, D-III

(C) A-II, B-III, C-IV, D-I

- (D) A-I, B-II, C-III, D-IV
- 79. Number of complexes with even number of electrons in t_{2g} orbitals is -

 $[Fe(H_2O)_6]^{2+}$, $[Co(H_2O)_6]^{2+}$, $[Co(H_2O)_6]^{3+}$, $[Cu(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$

(A)

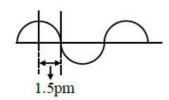
(B) 3

- (C) 2
- (D) 5

80. Identify the product (P) in the following reaction

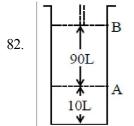
$$\begin{array}{c}
\stackrel{\text{COOH}}{\longrightarrow} i) \text{ Br}_2/\text{Red P} \\
\hline
ii) \text{ H}_2\text{O}
\end{array}$$

(A) \sim COOH Br


(B) COBr

(C) \sim CHO $_{Br}$

(D) COOH


Section - B (Numerical Value Type)

81. A hypothetical electromagnetic wave is show below.

The frequency of the wave is $x \times 10^{19}$ Hz.

x =_____(Nearest integer)

Consider the figure provided.

1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18°C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.

x = L atm. (nearest integer)

[Given : Absolute temperature = $^{\circ}$ C + 273.15, R = 0.08206 L atm mol⁻¹ K⁻¹]

83. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is_____.

84. The number of optical isomers in following compound is:_____.

85. The 'spin only' magnetic moment value of MO₄²⁻ is _____ BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn).

(Given atomic number : Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25 and Zn = 30)

- 86. Number of molecules from the following which are exceptions to octet rule is _____. CO₂, NO₂, H₂SO₄, BF₃, CH₄, SiF₄, ClO₂, PCl₅, BeF₂, C₂H₆, CHCl₃, CBr₄
- 87. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the mximum amount of aniline yellow formed will be_____g. (nearest integer) (consider complete conversion)
- 88. Consider the following reaction

$$A + B \rightarrow C$$

The time taken for A to become 1/4th of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

The overall order of the reaction is . .

89. Major product B of the following reaction has $\underline{\hspace{1cm}}$ π -bond.

$$\begin{array}{c}
CH_2CH_3 \\
\hline
\underline{KMnO_4-KOH} \\
\Delta
\end{array}$$
(A) $\xrightarrow{HNO_3/H_2SO_4}$
(B)

90. A solution containing 10g of an electrolyte AB_2 in 100g of water boils at 100.52°C. The degree of ionization of the electrolyte (α) is ____× 10⁻¹. (Nearest integer)

[Given : Molar mass of $AB_2 = 200 g$ mol⁻¹. K_b (molal boiling point elevation const. of water) = 0.52 K kg mol⁻¹, boiling point of water = 100°C; AB_2 ionises as $AB_2 \rightarrow A^{2+} + 2B^-$]

JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | FOUNDATION | MHT-CET

08-April-2024 (Morning Batch) : JEE Main Paper

MATHEMATICS

Single Cho	ice Correct								
1.	D	2.	С	3.	В	4.	A	5.	A
6.	C	7.	В	8.	В	9.	В	10.	D
11.	A	12.	В	13.	C	14.	В	15.	D
16.	В	17.	В	18.	C	19.	C	20.	В
Numerical	Value								
21.	7	22.	16	23.	17	24.	36	25.	103
26.	96	27.	5	28.	569	29.	16	30.	55

PHYSICS

Single	e Choice Cor	rect							
31.	A	32.	В	33.	A	34.	С	35.	В
36.	A	37.	В	38.	D	39.	A	40.	C
41.	C	42.	C	43.	В	44.	C	45.	C
46.	В	47.	C	48.	A	49.	A	50.	D
Nume	erical Value								
 51.	15	52.	4	53.	3	54.	748	55.	12
56.	7	57.	16	58.	3	59.	6	60.	156

CHEMISTRY

Single Choice Correct						
61. B	62.	С	63. B	64.	Α	65. A
66. D	67.	C	68. C	69.	C	70. C
71. A	72.	В	73. A	74.	В	75. C
76. C	77.	D	78. A	79.	В	80. A
Numerical Value						
81. 5	82.	55	83. 5	84.	32	85. 0
86. 6	87.	591	88. 1	89.	5	90. 5