MATHEMATICS

Section - A (Single Correct Answer)

1.	A line passing through the point A(9, 0) makes an angle of 30° with the positive direction of x-axis. If this
	line is rotated about A through an angle of 15° in the clockwise direction, then its equation in the new
	position is

(A)
$$\frac{y}{\sqrt{3}-2} + x = 9$$
 (B) $\frac{x}{\sqrt{3}-2} + y = 9$ (C) $\frac{x}{\sqrt{3}+2} + y = 9$ (D) $\frac{y}{\sqrt{3}+2} + x = 9$

- Let S_a denote the sum of first 'n' terms an arithmetic progression. If $S_{20} = 790$ and $S_{10} = 145$, then $S_{15} S_5$
 - (A) 395
- (C) 405
- (D) 410
- If z = x + iy, $xy \ne 0$, satisfies the equation $z^2 + i\overline{z} = 0$, then $|z^2|$ is equal to :
 - (A) 9
- (B) 1

- (D) $\frac{1}{4}$

4. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ be two vectors such that $|\vec{a}| = 1$; $\vec{a} \cdot \vec{b} = 2$ and $|\vec{b}| = 4$.

If $\vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b}$, then the angle between \vec{b} and \vec{c} is equal to:

(A)
$$\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(B)
$$\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

(A)
$$\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 (B) $\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ (C) $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ (D) $\cos^{-1}\left(\frac{2}{3}\right)$

(D)
$$\cos^{-1}\left(\frac{2}{3}\right)$$

- 5. The maximum area of a triangle whose one vertex is at (0, 0) and the other two vertices lie on the curve $y = -2x^2 + 54$ at points (x, y) and (-x, y) where y > 0 is :
 - (A) 88

122

(C) 92

(D) 108

- 6. The value of $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n^3}{(n^2+k^2)(n^2+3k^2)}$ is:
- (A) $\frac{(2\sqrt{3}+3)\pi}{24}$ (B) $\frac{13\pi}{8(4\sqrt{3}+3)}$ (C) $\frac{13(2\sqrt{3}-3)\pi}{8}$ (D) $\frac{\pi}{8(2\sqrt{3}+3)}$
- Let $g: R \to R$ be a non constant twice differentiable such that $g'\left(\frac{1}{2}\right) = g'\left(\frac{3}{2}\right)$. If a real valued function

f is defined as $f(x) = \frac{1}{2}[g(x) + g(2-x)]$, then

- (A) f'(x) = 0 for at least two x in (0, 2)
- (B) f''(x) = 0 for exactly one x in (0, 1)

(C) f''(x) = 0 for no x in (0, 1)

(D) $f'(\frac{3}{2}) + f'(\frac{1}{2}) = 1$

8.	The area (in squ	are units) of th	e region b	ounded by	the par	$rabola y^2 = 4(x)$	-2) and the	line y = 2x - 8	
	(A) 8	(B)	9		(C)	6	(D) 7		
9.	Let $y = y(x)$ be to	he solution of t	he differe	ntial equat	ion sec	$x dy + {2(1 - x)}$	$(x) \tan x + x(2)$	$-x)$ } $dx = 0$ such	
	that $y(0) = 2$. The	en y(2) is equal	to:						
	(A) 2	(B)	$2\{1-\sin \theta\}$	ı (2)}	(C)	$2\{\sin{(2)} + 1\}$	(D) 1		
10.	Let (α, β, γ) be	the foot of per	pendicula	r from the	point (1, 2, 3) on the	line point (1,	2, 3) on the line	
	x+3 $y-1$ z	z + 4							
	$\frac{x+3}{5} = \frac{y-1}{2} = \frac{z}{2}$	$\frac{1}{3}$, then 19($(\alpha + \beta + \gamma)$	is equal to) :				
	(A) 102	(B)	101		(C)	99	(D) 100		
11.	Two integers x a	` ′		lacement f	` ′		,, 10}. Th	en the probability	
	that $ x - y > 5$ is		1			(, , , , ,	, ,	1	
	30		62			62	31		
	(A) $\frac{30}{121}$	(B)	$\frac{02}{121}$		(C)	$\frac{62}{121}$	(D) $\frac{31}{121}$		
	121		121			121	121		
12.	If the domain of	the function f	$f(x) = \cos^{-1}$	$-1\left(\frac{2- x }{2}\right)$	+(log	$(3-x)^{-1}$ is [-	$-\alpha$, β) – $\{v\}$,	then $\alpha + \beta + \gamma$ is	
				(4)	· Ce	. // [717 (3)7	, ,	
	equal to:								
	(A) 12	(B)			` /	11	(D) 8		
13.							$x + 3y + 4 \lambda^2 z$	$z = \mu^2 + 15$, where	
	6. Consider the system of linear equation $x + y + z = 4\mu$, $x + 2y + 2\lambda z = 10\mu$, $x + 3y + 4\lambda^2 z = \mu^2 + 15$, where λ , $\mu \in \mathbb{R}$. Which one of the following statements is NOT correct?								
	(4) [7]		1	1 ,	.1.1	<i>-</i>			
	(A) The system	n has unique so	iution if 7	$1 \neq \frac{1}{2}$ and	μ≠1, 1	3			
			1						
	(B) The system	n is inconsisten	t if $\lambda = \frac{1}{2}$	and $\mu \neq 1$					
			_						
	(C) The system	n has infinite nu	umber of s	solutions if	$\lambda = \frac{1}{2}$	and $\mu = 15$			
	. ,				2	•			
	(D) The system	n is consistent	if $\lambda \neq \frac{1}{2}$						
	(D) The system	i is consistent	$1 \times \frac{1}{2}$						
14.	If the circles (x +	$(-1)^2 + (y+2)^2 =$	$= r^2$ and x	+y-4x-	4y + 4 =	= 0 intersect at	exactly two di	stinct points, then	
	(I) -	(T)			(4)	_	. 1		
	(A) 5 < r < 9	(B)	0 < r < 7		(C)	3 < r < 7	(D) ${2}$ < r	< /	
15.	If the length of th	e minor axis of	ellipse is	equal to ha	lf of the	distance betwe	en the foci, the	en the eccentricity	
	of the ellipse is:								
	2/5		$\sqrt{3}$			1	2		
	(A) $\frac{\sqrt{5}}{3}$	(B)	$\frac{\sqrt{3}}{2}$		(C)	$\frac{1}{\sqrt{3}}$	(D) $\frac{2}{\sqrt{5}}$		
16.	Let M denote the	e median of the	- e following	r frequency	v distrik	oution	v -		
10.	Let 1/1 denote the						16.20		
	<u></u>	Class	0-4	4-8 9	8-12		16-20		
		requency	3	9	10	8	6		
	Then 20 M is eq		104		(0)	50	(D) 200		
	(A) 416	(B)	104		(C)	32	(D) 208		

17. If
$$f(x) = \begin{vmatrix} 2\cos^4 x & 2\sin^4 x & 3+\sin^2 2x \\ 3+2\cos^4 x & 2\sin^4 x & \sin^2 2x \\ 2\cos^4 x & 3+2\sin^4 x & \sin^2 2x \end{vmatrix}$$
 then $\frac{1}{5}f'(0)$ is equal to ______

- (A) 0
- (B) 1

- (C) 2
- (D) 6
- 18. Let A(2, 3, 5) and C(-3, 4, -2) be opposite vertices of a parallelogram ABCD if the diagonal $\overrightarrow{BD} = \hat{i} + 2\hat{j} + 3\hat{k}$ then the area of the parallelogram is equal to
 - (A) $\frac{1}{2}\sqrt{410}$

(B) $\frac{1}{2}\sqrt{474}$

(C) $\frac{1}{2}\sqrt{586}$

- (D) $\frac{1}{2}\sqrt{306}$
- 19. If $2 \sin 3x + \sin 2x \cos x + 4 \sin x 4 = 0$ has exactly 3 solutions in the interval $\left[0, \frac{n\pi}{2}\right]$, $n \in \mathbb{N}$, then the roots of the equation $x^2 + nx + (n-3) = 0$ belong to :

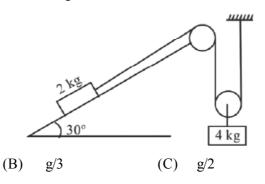
 - (A) $(0, \infty)$ (B) $(-\infty, 0)$
- (C) $\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)$ (D) Z
- 20. Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be a differentiable function such that $f(0) = \frac{1}{2}$. If the $\lim_{x \to 0} \frac{x \int_0^x f(t) dt}{e^{x^2} 1} = \alpha$, then $8\alpha^2$ is equal to:
 - (A) 16
- (B) 2

- (C) 1
- (D) 4

Section - B (Numerical Value Type)

- 21. A group of 40 students appeared in an examination of 3 subjects Mathematics, Physics & Chemistry, It was found that all students passed in at least one of the subjects, 20 students passed in Mathematics, 25 students passed in Physics, 16 students passed in Chemistry, at most 11 students passed in both Mathematics and Physics, at most 15 students passed in both Physics and Chemistry, at most 15 students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is
- 22. If d1 is the shortest distance between the lines x + 1 = 2y = -12z, x = y + 2 = 6z 6 and d₂ is the shortest distance between the lines $\frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5}$, $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{3}$, then the value of $\frac{32\sqrt{3}d_1}{d}$ is :
- 23. Let the latus rectum of the hyperbola $\frac{x^2}{9} \frac{y^2}{b^2} = 1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If b² is equal to $\frac{l}{m}(1+\sqrt{n})$, where l and m are co-prime numbers, then $l^2+m^2+n^2$ is equal to _____
- 24. Let $A = \{1, 2, 3, 7\}$ and let P(1) denote the power set of A. If the number of functions $f: A \rightarrow P(A)$ such that $a \in f(a)$, $\forall a \in A$ is m^n , m and $n \in N$ and m is least, then m + n is equal to

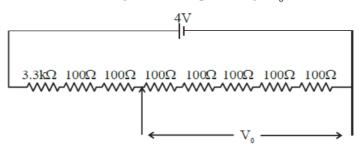
- 25. The value $9\int_{0}^{9} \left[\sqrt{\frac{10x}{x+1}} \right] dx$, where [t] denotes the greatest integer less than or equal to t, is _____.
- 26. Number of integral terms in the expansion of $\left\{7^{\left(\frac{1}{2}\right)} + 11^{\left(\frac{1}{6}\right)}\right\}^{824}$ is equal to _____.
- 27. Let y = y(x) be the solution of the differential equation $(1 x^2) dy = \left[xy + (x^3 + 2)\sqrt{3(1 x^2)} \right] dx$, -1 < x < 1, y(0) = 0. If $y\left(\frac{1}{2}\right) = \frac{m}{n}$, m and n are co-prime numbers, then m + n is equal to ____.
- 28. Let α , $\beta \in \mathbb{N}$ be roots of equation $x^2 70x + \lambda = 0$, where $\frac{\lambda}{2}$, $\frac{\lambda}{3} \notin \mathbb{N}$. If λ assumes the minimum possible value, then $\frac{\left(\sqrt{\alpha 1} + \sqrt{\beta 1}\right)(\lambda + 35)}{|\alpha \beta|}$ is equal to :
- 29. If the function $f(x) = \begin{cases} \frac{1}{|x|}, & |x| \ge 2 \\ ax^2 + 2b, & |x| < 2 \end{cases}$ is differentiable on R, then 48(a + b) is equal to _____.
- 30. Let $\alpha = 1^2 + 4^2 + 8^2 + 13^2 + 19^2 + 26^2 + \text{upto } 10 \text{ terms and } \beta = \sum_{n=1}^{10} n^4$. If $4\alpha \beta = 55k + 40$, then k is equal to _____.


PHYSICS

Section - A (Single Correct Answer)

31. Match List-I with List-II.

	List-I		List-II
A.	Coefficient of viscosity	I.	[M L ² T ⁻²]
B.	Surface Tension	II.	$[M L^2T^{-1}]$
C.	Angular momentum	III.	$[M L^{-1}T^{-1}]$
D.	Rotational kinetic energy	IV.	$[M L^0T^{-2}]$
(A)	A-II, B-I, C-IV, D-III	(B)	A-I, B-II, C-III, D-IV
(C)	A-III, B-IV, C-II, D-I	(D)	A-IV, B-III, C-II, D-I


32. All surfaces shown in figure are assumed to be frictionless and the pulleys and the string are light. The acceleration of the block of mass 2 kg is:

(D) g/4

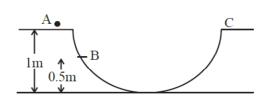
(A) g

33. A potential divider circuit is shown in figure. The output voltage V_0 is

- (A) 4V
- (B) 2 mV
- (C) 0.5 V
- (D) 12 mV

34. Young's modules of material of a wire of length 'L' and cross-sectional area A is Y. If the length of the wire is doubled and cross-sectional area is halved then Young's **modules** will be:

- (A) Y/4
- (B) 4Y
- (C) Y
- (D) 2Y


35. The work function of a substance is 3.0 eV. The longest wavelength of light that can cause the emission of photoelectrons from this substance is approximately:

- (A 215 nm
- (B) 414 nm
- (C) 400 nm
- (D) 200 nm

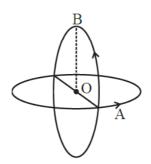
36. The ratio of the magnitude of the kinetic energy to the potential energy of an electron in the 5th excited state of a hydrogen atom is:

- (A) 4
- (B) 1/4
- (C) 1/2
- (D) 1

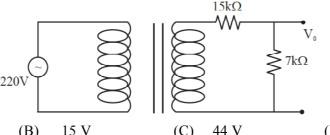
37. A particle is placed at the point A of a frictionless track ABC as shown in figure. It is gently pushed toward right. The speed of the particle when it reaches the point B is : (Take $g = 10 \text{ m/s}^2$).

- (A) 20 m/s
- (B) $\sqrt{10}$ m/s
- (C) $2\sqrt{10} \text{ m/s}$
- (D) 10 m/s

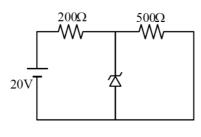
38. The electric field of an electromagnetic wave in free space is represented as $\vec{E} = E_0 \cos(\omega t - kz)\hat{i}$. The corresponding magnetic induction vector will be:

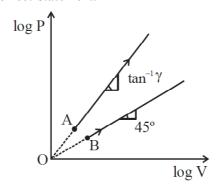

(A) $\vec{B} = E_0 C \cos(\omega t - kz)\hat{j}$

(B) $\vec{B} = \frac{E_0}{C} \cos(\omega t - kz)\hat{j}$


(C) $\vec{B} = E_0 C \cos(\omega t + kz)\hat{j}$

(D) $\vec{B} = \frac{E_0}{C} \cos(\omega t + kz)\hat{j}$


39. Two insulated circular loop A and B radius 'a' carrying a current of 'I' in the anti clockwise direction as shown in figure. The magnitude of the magnetic induction at the centre will be:


- (A) $\frac{\sqrt{2}\mu_0I}{a}$
- (C) $\frac{\mu_0 I}{\sqrt{2}a}$
- 40. The diffraction pattern of a light of wavelength 400 nm diffracting from a slit of width 0.2 mm is focused on the focal plane of a convex lens of focal length 100 cm. The width of the 1st secondary maxima will be
 - (A) 2 mm
- (B) 2 cm
- (C) 0.02 mm
- (D) 0.2 mm
- 41. Primary coil of a transformer is connected to 220 V ac. Primary and secondary turns of the transforms are 100 and 10 respectively. Secondary coil of transformer is connected to two series resistance shown in shown in figure. The output voltage (V_0) is :

- (A) 7 V
- (B)
- 44 V (C)
- 22 V (D)
- 42. The gravitational potential at a point above the surface of earth is -5.12×10^7 J/kg and the acceleration due to gravity at that point is 6.4 m/s². Assume that the mean radius of earth to be 6400 km. The height of this point above the earth's surface is:
 - (A) 1600 km
- (B) 540 km
- 1200 km (C)
- (D) $1000\,\mathrm{km}$
- 43. An electric toaster has resistance of 60 Ω at room temperature (27°C). The toaster is connected to a 220 V supply. If the current flowing through it reaches 2.75 A, the temperature attained by toaster is around: (if $\alpha = 2 \times 10^{-4} / ^{\circ}$ C)
 - (A) 694°C
- 1235°C (B)
- 1694°C (C)
- 1667°C (D)
- 44. A Zener diode of breakdown voltage 10V is used as a voltage regulator as shown in the figure. The current through the Zener diode is

- (A) 50 mA
- (B)
- 30 mA (C)
- (D) 20 mA
- 45. Two thermodynamical process are shown in the figure. The molar heat capacity for process A and B are C_A and C_B . The molar heat capacity at constant pressure and constant volume are represented by C_D and C_v, respectively. Choose the correct statement.

(A)
$$C_B = \infty$$
, $C_A = 0$

(B) $C_A = 0$ and $C_B = \infty$

(C)
$$C_P > C_V > C_A = C_B$$

(D) $C_A > C_P > C_V$

46. The electrostatic potential due to an electric dipole at a distance 'r' varies as :

(B)
$$\frac{1}{r^2}$$

(C)
$$\frac{1}{r^3}$$

(D)
$$\frac{1}{2}$$

47. A spherical body of mass 100 g is dropped from a height of 10 m from the ground. After hitting the ground, the body rebounds to a height of 5m. The impulse of force imparted by the ground to the body is given by (given $g = 9.8 \text{ m/s}^2$)

(B) 43.2 kg ms^{-1}

(C)
$$23.9 \text{ kg ms}^{-1}$$

(D) 2.39 kg ms^{-1}

48. A particle of mass m projected with a velocity 'u' making an angle of 300 with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h is:

(A)
$$\frac{\sqrt{3}}{16} \frac{\text{mu}^3}{\text{g}}$$

(B)
$$\frac{\sqrt{3}}{2} \frac{\text{mu}^2}{\text{g}}$$

(C)
$$\frac{mu^3}{\sqrt{2}g}$$

(D)

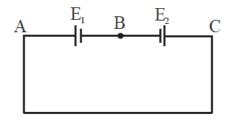
49. At which temperature the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at 47°C?

(B)
$$-73 \text{ K}$$

50. A series L, R circuit connected with an ac source E = (25 sin 1000 t) V has a power factor of $\frac{1}{\sqrt{2}}$. If the source of emf is changed to $E = (20 \sin 2000 t)V$, the new power factor of the circuit will be:

(A)
$$\frac{1}{\sqrt{2}}$$

(B)
$$\frac{1}{\sqrt{3}}$$
 (C) $\frac{1}{\sqrt{5}}$ (D) $\frac{1}{\sqrt{7}}$

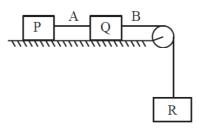

(C)
$$\frac{1}{\sqrt{5}}$$

(D)
$$\frac{1}{\sqrt{7}}$$

Section - B (Numerical Value Type)

51. The horizontal component of earth's magnetic field at a place is 3.5×10^{-5} T. A very long straight conductor carrying current of $\sqrt{2}A$ in the direction from South east to North West is placed. The force per unit length experienced by the conductor is \times 10⁻⁶ N/m.

52. Two cells are connected in opposition as shown. Cell E_1 is of 8 V emf and 2 Ω internal resistance; the cell E_2 is of 2 V emf and 4 Ω internal resistance. The terminal potential difference of cell E_2 is:

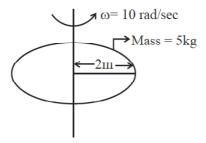


53. A electron of hydrogen atom on an excited state is having energy $E_n = -0.85$ eV. The maximum number of allowed transitions to lower energy level is

54. Each of three blocks P, Q and R shown in figure has a mass of 3 kg. Each of the wire A and B has cross-sectional area 0.005 cm2 and Young's modulus 2×10^{11} Nm⁻².

Neglecting friction, the longitudinal strain on wire B is $\times 10^{-4}$.

(Take $g = 10 \text{ m/s}^2$)


55. The distance between object and its two times magnified real image as produced by a convex lens is 45 cm.

The focal length of the lens used is cm.

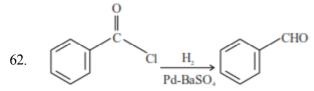
- 56. The displacement and the increase in the velocity of a moving particle in the time interval of t to (t + 1) s are 125 m and 50 m/s, respectively. The distance travelled by the particle in (t + 2)th s is ____ m.
- 57. A capacitor of capacitance C and potential V has energy E. It is connected to another capacitor of capacitance 2 C and potential 2V.

Then the loss of energy is $\frac{x}{3}E$, where x is _____.

58. Consider a Disc of mass 5 kg, radius 2m, rotating with angular velocity of 10 rad/s about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is _____ J.

- 59. In a closed organ pipe, the frequency of fundamental note is 30 Hz. A certain amount of water is now poured in the organ pipe so that the fundamental frequency is increased to 110 Hz. If the organ pipe has a cross-sectional area of 2 cm², the amount of water poured in the organ tube is _____ g. (Take speed of sound in air is 330 m/s)
- 60. A ceiling fan having 3 blades of length 80 cm each is rotating with an angular velocity of 1200 rpm. The magnetic field of earth in that region is 0.5 G and angle of dip is 30° . The emf induced across the blades is $N\pi \times 10^{-5}$ V. The value of N is ______.

CHEMISTRY


Section - A (Single Correct Answer)

61. Given below are two statements:

Statement-I: The gas liberated on warming a salt with dil. H₂SO₄, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.

Statement-II: In statement-I the colour of paper turns black because of formation of lead sulphite. In the light of the above statements, choose the most appropriate answer from the options given below.

- (A) Both Statement-I and Statement-II are false.
- (B) Statement-I is false but Statement-II is true.
- (C) Statement-I is true but Statement-II is false.
- (D) Both Statement-I and Statement-II are true.

This reduction reaction is known as:

(A) Rosenmund reduction

(B) Wolff-Kishner reduction

(C) Stephen reduction

- (D) Etard reduction
- 63. Sugar which does not give reddish brown precipitate with Fehling's reagent is :
 - (A) Sucrose
- (B) Lactose
- (C) Glucose
- (D) Maltose
- 64. Given below are the two statements: one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): There is a considerable increase in covalent radius from N to P. However from As to Bi only a small increase in covalent radius is observed.

Reason (R): covalent and ionic radii in a particular oxidation state increases down the group.

In the light of the above statement, choose the most appropriate answer from the options given below.

- (A) (A) is false but (R) is true.
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true but (R) is false.
- (D) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 65. Which of the following molecule/species is most stable?

- 66. Diamagnetic Lanthanoid ions are:
 - (A) Nd^{3+} and Eu^{3+}

(B) La^{3+} and Ce^{4+}

(C) Nd^{3+} and Ce^{4+}

- (D) Lu^{3+} and Eu^{3+}
- 67. Aluminium chloride in acidified aqueous solution forms an ion having geometry.
 - (A) Octahedral

(B) Square Planar

(C) Tetrahedral

- (D) Trigonal bipyramidal
- 68. Given below are two statements:

Statement-I: The orbitals having same energy are called as degenerate orbitals.

Statement-II: In hydrogen atom, 3p and 3d-orbitals are not degenerate orbitals.

In the light of the above statements, choose the most appropriate answer from the options given.

- (A) Statement-I is true but Statement-II is false.
- (B) Both Statement-I and Statement-II are true.
- (C) Both Statement-I and Statement-II are false.
- (D) Statement-I is false but Statement-II is true.

69. Example of vinylic halide is

70. Structure of 4-Methylpent-2-enal is

(A)
$$H_2C = C - C - CH_2 - C - H_2 + H_3 + H_3$$

(C)
$$CH_3 - CH_2 - CH = C - C - H$$

 CH_3

(D)
$$CH_3 - CH - CH = CH - C - H$$

$$CH_3$$

71. Match List-I with List-II:

	List-I (Molecule)		List-II (Shape)
A.	BrF ₅	I.	T-shape
B.	H_2O	II.	See saw
C.	ClF ₃	III.	Bent
D.	SF_4	IV.	Square pyramidal

- (A) (A)-I, (B)-II, (C)-IV, (D)-III
- (B) (A)-II, (B)-I, (C)-III, (D)-IV
- (C) (A)-III, (B)-IV, (C)-I, (D)-II
- (D) (A)-IV, (B)-III, (C)-I, (D)-II

72. The final product A, formed in the following multistep reaction sequence is :

Br (i) Mg, ether then CO₂, H⁺ (ii) NH₃,
$$\Delta$$
 (iii) Br₂, NaOH

73. In the given reactions identify the reagent A and reagent B:

$$(CH_3)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_3)$$

$$(B)^{+} + CS_2$$

$$(Intermediate)$$

$$(CH_3)$$

$$(CH_4)$$

$$(CH_3)$$

$$(CH_3)$$

$$(CH_4)$$

$$(CH$$

- (A) A-CrO₃
- B-CrO₂
- (B) A-CrO₃
- B-CrO,Cl,
- (C) A-CrO₂Cl₂
- B-CrO,Cl,
- (D) A-CrO₂Cl₂
- B-CrO₃
- 74. Given below are two statement one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): $CH_2 = CH - CH_2 - Cl$ is an example of allyl halide.

Reason (R): Allyl halides are the compounds in which the halogen atom is attached to sp²-hybridised carbon atom.

In the light of the two above statements, choose the most appropriate answer from the options given below.

- (A) (A) is true but (R) is false
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (C) (A) is false but (R) is true
- (D) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 75. What happens to freezing point of benzene when small quantity of napthalene is added to benzene?
 - (A) Increases

- (B) Remains unchanged
- (C) First decreases and then increases
- (D) Decreases

76. Match List-I with List-II:

	List-I (Species)		List-II (Electronic distribution)
A.	Cr ⁺²	(I)	3d8
B.	Mn^+	(II)	$3d^3 4s^1$
C.	Ni^{+2}	(III)	$3d^4$
D.	V^+	(IV)	3d ⁵ 4s ¹

Choose the correct answer from the options given below:

- (A) (A)-I, (B)-II, (C)-III, (D)-IV
- (B) (A)-III, (B)-IV, (C)-I, (D)-II
- (C) (A)-IV, (B)-III, (C)-I, (D)-II
- (D) (A)-II, (B)-I, (C)-IV, (D)-III
- 77. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

$$CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr$$
(C)

 $CH_3 - C \equiv CH_2 - CH_2 + CH_3 + CH_3 - CH_3 + CH_3$

(A)
$$A=CH_3-C=\bar{C}N_a^+$$
, $B=CH_3-CH_2-CH_2-Br$

(C)
$$A = CH_3 - CH_2 - CH_3$$
, $B = CH_3 - C \equiv CH$

(D)
$$A = CH_3 - C \equiv \overline{C}N_a^+, B = CH_3 - CH_2 - CH_3$$

78. Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B).

(A)
$$A = HNO_3/H_2SO_4$$
; $B = \bigcirc$

(B)
$$A = NaNO_2 + HCl, 0 - 5^{\circ}C$$
; $B = NH_2$

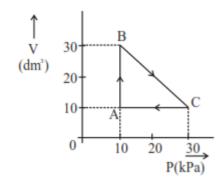
(C)
$$A = NaNO_2 + HCl, 0 - 5^{\circ}C; B = \bigcirc$$

(D)
$$A = NaNO_2 + HCl, 0 - 5^{\circ}C; B =$$

- 79. The Lassiagne's extract is boiled with dil. HNO₃ before testing for halogens because,
 - (A) AgCN is soluble in HNO₃
 - (B) Silver halides are soluble in HNO₃
 - (C) Ag_2S is soluble in HNO₃
 - (D) Na₂S and NaCN are decomposed by HNO₃
- 80. Choose the correct Statements from the following:
 - **A.** Ethane-1, 2-diamine is a chelating ligand.
 - **B.** Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.
 - C. Cyanide ion is used as ligand for leaching of silver.
 - **D.** Phosphine act as a ligand in Wilkinson catalyst.
 - **E.** The stability constants of Ca^{2+} and Mg^{2+} are similar with EDTA complexes.

Choose the correct answer from the options given below:

- (A) (B), (C), (E) only
- (B) (C), (D), (E) only
- (C) (A), (B), (C) only
- (D) (A), (D), (E) only


Section - B (Numerical Value Type)

81. The rate of first order reaction is $0.04 \text{ mol } L^{-1} \text{ s}^{-1}$ at 10 minutes and $0.03 \text{ mol } L^{-1} \text{ s}^{-1}$ at 20 minutes after initiation. Half-life of the reaction is _____ minutes.

[Given: log2 = 0.3010, log3 = 0.4771]

82. The pH at which $Mg(OH)_2$ [K_{sp} = 1 × 10⁻¹¹] begins to precipitate from a solution containing 0.10 M Mg^{2+} ions is

83.

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $A \to B \to C \to A$ as shown in the diagram. The total work done in the process is J.

- 84. If IUPAC name of an element is "Unununnium" then the element belongs to nth group of periodic table. The value of 'n' is _____.
- 85. The total number of molecular orbitals formed from 2s and 2p atomic orbitals of a diatomic molecule.
- 86. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm, while the solvent moved by 5 cm. The retardation factor of the organic compound is $\times 10^{-1}$.
- 87. The compound formed by the reaction of ethanal with semicarbazide contains _____ number of nitrogen atoms.
- 88. 0.05 cm thick coating of silver is deposited on a plate of 0.05 m² area. The number of silver atoms deposited on plate are $____ \times 10^{23}$. [At mass Ag = 108, d = 7.9 g cm⁻³]
- 89. $2MnO_4^- + bI^- + cH_2O \rightarrow xI_2 + yMnO_2 + zOH^-$ If the above equation is balanced with integer coefficients, the value of 'z' is _____.
- 90. The mass of sodium acetate (CH₃COONa) required to prepare 250 mL of 0.35 M aqueous solution is _____ g.

 [Molar mass of CH₃COONa is 82.02 g mol⁻¹]

JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | MHT-CET | FOUNDATION

30-Jan.-2024 (Morning) : PCM

MATHEMATICS

				MA	THEM	IATICS				
Single Cho	oice Co	orrect								
1.	P	1	2.	Α	3.	В	4.	С	5.	D
6.	F	3	7.	A	8.	В	9.	A	10.	В
11	. A	Λ	12.	C	13.	В	14.	C	15.	D
16	5. I)	17.	A	18.	В	19.	В	20.	В
Numerica	l Value	<u>;</u>								
21		0	22.	16	23.	182	24.	44	25.	155
26	i. 1	38	27.	97	28.	60	29.	15	30.	353
					PHYS	ICS				
Single Cho										
31			32.	В	33.	С	34.	С	35.	В
36			37.	В	38.	В	39.	С	40.	Α
41		_	42.	Α	43.	C	44.	C	45.	Bonus
46			47.	D	48.	Α	49.	D	50.	С
Numerica										
51		5	52.	6	53.	6	54.	2	55.	10
56	5. 1	75	57.	2	58.	250	59.	400	60.	32
				_						
				C	HEMI	STRY				
Single Cho										
61			62.	A	63.	A	64.	В	65.	A
66			67.	A	68.	A	69.	A	70.	D
71			72.	В	73.	В	74.	A	75.	D
76			77.	A	78.	D	79.	D	80.	С
Numerica										
81		4	82.	9	83.	200	84.	11	85.	8
86	5. 7		87.	3	88.	11	89.	8	90.	7