13-April-2023 (Evening Batch) : JEE Main Paper

MATHEMATICS

Section - A (Single Correct Answer)

1. A

Sol. $\left|\begin{array}{ccc}2 & 1 & -1 \\ 2 & -5 & \lambda \\ 1 & 2 & -5\end{array}\right|=0$
$2(25-2 \lambda)-(-10-\lambda)-(4+5)=0$
$50-4 \lambda+10+\lambda-9=0$
$51=3 \lambda \Rightarrow \lambda=17$
$\left|\begin{array}{ccc}2 & 1 & 5 \\ 2 & -5 & \mu \\ 1 & 2 & 7\end{array}\right|=0$
$\Rightarrow 2(-35-2 \mu)-(14-\mu)+5(4+5)=0$
$-70-4 \mu-14+\mu+45=0$
$-3 \mu=39$
$-\mu=13$
$(\lambda+\mu)^{2}+(\lambda-\mu)^{2}=2\left(\lambda^{2}+\mu^{2}\right)$
$=2\left(17^{2}+13^{2}\right)=916$
2. C

Sol. $\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{5} \mathrm{C}_{\mathrm{r}}\left(2 \mathrm{x}^{35-\mathrm{r}}\right)\left(\frac{-1}{3 \mathrm{x}^{2}}\right)^{\mathrm{r}}={ }^{5} \mathrm{C}_{\mathrm{r}} \frac{(2)^{5-\mathrm{r}}}{(-3)^{\mathrm{r}}}(\mathrm{x})^{15-5 \mathrm{r}}$
$\therefore 15-5 r=5$
$\therefore \mathrm{r}=2$
$\mathrm{T}_{3}=10\left(\frac{8}{9}\right) \mathrm{x}^{5}$

So, coefficient is $\frac{80}{9}$
3. C

Sol. Points $(0,-1,2)$ and $(-1,2,1)$ parallel to the line of $(5,1,-7)$ and $(1,-1,-1)$

Normal vector $=\left|\begin{array}{llc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 4 & 2 & -6 \\ -1 & 3 & -1\end{array}\right|$
$\overrightarrow{\mathrm{n}}=16 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+14 \hat{\mathrm{k}}$
$16 x+10 y+14 z=d$
Point ($0,-1,2$)
$0-10+28=\mathrm{d} \Rightarrow \mathrm{d}=18$
$8 x+5 y+7 z=9$ is equation of plane.
4. D

Sol. $x^{2}-\sqrt{2} x+2=0$
$x=\frac{\sqrt{2} \pm \sqrt{2-8}}{2}=\frac{\sqrt{2} \pm \sqrt{6} i}{2}$
$\alpha=\frac{\sqrt{2}+\sqrt{6} \mathrm{i}}{2}=\sqrt{2} \mathrm{e}^{\frac{\mathrm{ix}}{3}} \& \beta=\sqrt{2} \mathrm{e}^{\frac{-\mathrm{i} \pi}{3}}$
$\alpha^{14}=2^{7} e^{\frac{\mathrm{i} 14 \pi}{3}}=128\left[e^{\frac{\mathrm{i} 2 \pi}{3}}\right]$
$\beta^{14}=128\left[\mathrm{e}^{\frac{-\mathrm{i} 2 \pi}{3}}\right]$
$\alpha^{14}+\beta^{14}=128(2) \cos \left(\frac{2 \pi}{3}\right)=-128$
5. D

Sol. $\operatorname{ar}^{5}+\operatorname{ar}^{7}=2$
$\left(\mathrm{ar}^{2}\right)\left(\mathrm{ar}^{4}\right)=\frac{1}{9}$
$\mathrm{a}^{2} \mathrm{r}^{6}=\frac{1}{9}$
Now, $r>0$
$\operatorname{ar}^{5}\left(1+r^{2}\right)=2$

Now, $\mathrm{ar}^{3}=\frac{1}{3}$ or $-\frac{1}{3}($ rejected $)$
$\mathrm{r}^{2}=2$
$\mathrm{r}=\sqrt{2}$
$a=\frac{1}{6 \sqrt{2}}$
Now, $6\left(a_{2}+a_{4}\right)\left(a_{4}+a_{6}\right)$
$6\left(a r+a r^{3}\right)\left(a r^{3}+a r^{5}\right)$
$6\left(\frac{1}{36.2}\right)(4)(9)=3$
6. B

Sol. upon solving we get coordinates as $(6,8),(1,2)$ and $(5,-7)$

So centroid : (α, β) is
$\alpha=\frac{6+1+5}{3}=4$
$\beta=\frac{8+2-7}{3}=1$
$\alpha+2 \beta=6$
$2 \alpha-\beta=7$
Ans. $x^{2}-13 x+42=0$
7. D

Sol. $|\vec{a}|=2,|\vec{b}|=3$
$|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$
$|-3 \vec{a} \times \vec{b}+4 \vec{b} \times \vec{a}|^{2}$
$|-3 \vec{a} \times \vec{b}-4 \vec{a} \times \vec{b}|^{2}$
$|-7 \vec{a} \times \overrightarrow{\mathrm{b}}|^{2}$
$\left(-7|\vec{a}| \times|\vec{b}| \sin \left(\frac{\pi}{4}\right)\right)^{2}$
$49 \times 4 \times 9 \times \frac{1}{2}=882$
8. C

Sol.

Equation of line
$\frac{x-4}{4-1}=\frac{y-5}{5-(-7)}=\frac{z-8}{8-5}$
$\frac{x-4}{3}=\frac{y-5}{12}=\frac{z-8}{3}$
Let ponit $\mathrm{N}(3 \lambda+4,12 \lambda+5,3 \lambda+8)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{PN}}=(3 \lambda+4-1) \hat{\mathrm{i}}+(12 \lambda+5-(-2)) \hat{\mathrm{j}}+(3 \lambda+8-3) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{PN}}=(3 \lambda+3) \hat{\mathrm{i}}+(12 \lambda+7) \hat{\mathrm{j}}+(3 \lambda+5) \hat{\mathrm{k}}
\end{aligned}
$$

And parallel vector to line (say $\vec{a}=3 \hat{i}+12 \hat{j}+3 \hat{k}$)
Now, $\overrightarrow{\mathrm{PN}} \cdot \overrightarrow{\mathrm{a}}=0$
$(3 \lambda+3) 3+(12 \lambda+7) 12+(3 \lambda+5) 3=0$
$162 \lambda+108=0 \Rightarrow \lambda=\frac{-108}{162}=\frac{-2}{3}$
So point N is $(2,-3,6)$
Now distance is $=\left|\frac{2(2)-2(-3)+6+5}{\sqrt{4+4+1}}\right|=7$
9. C

Sol. $\lim _{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{c x e^{-c x}}{2}}{\frac{(1-\cos 2 x)}{4 x^{2}} \times 4 x^{2}}=17$
On expansion,
$\lim _{x \rightarrow 0} \frac{\left(1+a x+\frac{a^{2} x^{2}}{2}\right)-\left(1-\frac{b^{2} x^{2}}{2}\right)-\frac{c x}{2}(1-c x)}{2 x^{2}}=17$
$\lim _{x \rightarrow 0} \frac{\left(a-\frac{c}{2}\right) x+x^{2}\left(\frac{a^{2}}{2}+\frac{b^{2}}{2}+\frac{c^{2}}{2}\right)}{2 x^{2}}=17$

For limit to be exist $\mathrm{a}-\frac{\mathrm{c}}{2}=0$
$\mathrm{a}=\frac{\mathrm{c}}{2}$
and $\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4}=17$
$a^{2}+b^{2}+4 a^{2}=17 \times 4$
$5 a^{2}+b^{2}=68$
10. A

Sol.

First find point A by solving $4 x+3 y=1$ and $3 x-4 y=32$
After solving, point A is $(4,-5)$
centre (α, β) lie on $4 x+3 y=1$
$4 \alpha+3 \beta=1 \Rightarrow \beta=\frac{1-4 \alpha}{3}$
Now distance from centre to line
$3 x-4 y-32=0$ and $3 x+4 y-24=0$ are equal.

$$
\left|\frac{3 \alpha-4\left(\frac{1-4 \alpha}{3}\right)-32}{5}\right|=\left|\frac{3 \alpha+4\left(\frac{1-4 \alpha}{3}\right)-24}{5}\right|
$$

after solving $\alpha=1$ and $\alpha=\frac{28}{3}$
For $\alpha=1$, centre $(1,-1) \Rightarrow$ radius $=5$
For $\alpha=\frac{28}{3}$, centre $\left(\frac{28}{3}, \frac{-109}{2}\right)$
\Rightarrow radius ≈ 49.78 (rejected)
Hence, $\alpha=1, \beta=-1, r=5$
$\alpha-\beta+r=7$
11. A

Sol. First arrange in alphabetical order
i.e. ADMNOY
$\mathrm{A}_{-----}=5$!
$\mathrm{D}_{-----}=5$!
$\mathrm{MA}_{----}=4$!
$\mathrm{MD}_{-} \mathrm{C}_{-}=4$!
$\mathrm{MN}_{-} \mathrm{M}_{-}=4$!
$\mathrm{MOA}_{---}=3$!
$\mathrm{MOD}_{--}=3$!
$\mathrm{MONA}_{--}=2$
MONDAY=1
$=327$
12. B

Sol. $f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$
$\frac{\mathrm{x}^{2}+1-1}{\mathrm{x}^{2}+1}=1-\frac{1}{\mathrm{x}^{2}+1} \Rightarrow[0,1)$
Range of $f(x)=[0,2 \pi)$
13. A

Sol. $(\mathrm{p} \wedge(\sim \mathrm{q}) \vee((\sim \mathrm{p}) \wedge \mathrm{q}) \vee((\sim \mathrm{p}) \wedge(\sim \mathrm{q})))$
$(\mathrm{p} \wedge(\sim \mathrm{q})) \vee((\sim \mathrm{p}) \wedge(\mathrm{q} \vee(\sim \mathrm{q})))$
$(\mathrm{p} \wedge(\sim \mathrm{q})) \vee((\sim \mathrm{p}) \wedge \mathrm{t})$
$(\mathrm{p} \wedge(\sim \mathrm{q})) \vee(\sim \mathrm{p})$
$(\sim \mathrm{p}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$
$(\sim p \vee p) \wedge(\sim p \vee \sim q)$
$\mathrm{t} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q})$
$=\sim p \vee \sim q$
14. C

Sol. $\mathrm{np}-\mathrm{npq}=1$
$\Rightarrow \mathrm{np}^{2}=1$
$2^{n} C_{2} p^{2} q^{n-2}=3^{n} C_{1} p q^{n-1}$
$\Rightarrow \mathrm{np}-\mathrm{p}=3 \mathrm{q} \quad(\therefore \mathrm{q}=1-\mathrm{p})$
$\Rightarrow \mathrm{p}=\frac{1}{2}$
Hence $n=4$
$P(x>1)=1-(p(x=0)+p(x=1)$
$=1-\left({ }^{4} \mathrm{C}_{0}\left(\frac{1}{2}\right)^{4}+{ }^{4} \mathrm{C}_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{8}\right)=\frac{11}{16}$
15. D

Sol. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ a & 3 & 1 \\ 1 & 1 & 2\end{array}\right] \quad|A|=2$
$1(6-1)-2(2 \alpha-1)+3(\alpha-3)=2$
$5-4 \alpha+2+3 \alpha-9=2$
$-\alpha-4=0$
$\alpha=-4$
$8 \operatorname{Adj}(2 \mathrm{Adj}(2 \mathrm{~A}))$
$8\left|\operatorname{Adj}\left(2 \times 2^{2} \operatorname{Adj}(\mathrm{~A})\right)\right|$
$8\left|\operatorname{Adj}\left(2^{3} \operatorname{Adj} \mathrm{~A}\right)\right|$
$2^{3}\left(2^{6}\right)^{3}|\operatorname{Adj}(\operatorname{Adj})|$
$2^{3} \cdot 2^{18}|\mathrm{~A}|^{4}$
$2^{21} \cdot 2^{4}=2^{25}=\left(2^{5}\right)^{5}=(32)^{5}$
$\mathrm{n}=5$
$\alpha=-4$
16. B

Sol. Let $\mathrm{Z}=\mathrm{x}+\mathrm{iy}, \mathrm{x} \in \mathrm{R}, \mathrm{y} \in \mathrm{R}$
$x-i y=i\left(x^{2}-y^{2}+(2 x y) i+x\right)$
$x=-2 x y$
$-y=-y^{2}+x^{2}+x$
$\Rightarrow \mathrm{x}=0, \mathrm{y}=-\frac{1}{2}($ from $(1))$
If $x \neq 0$, then $y=0,1$
If $\mathrm{y}=-\frac{1}{2}$, then $\mathrm{x}=\frac{1}{2},-\frac{3}{2}$
$\mathrm{Z}=0+\mathrm{i} 0,0+\mathrm{i}, \frac{1}{2}-\frac{\mathrm{i}}{2},-\frac{3}{2}-\frac{\mathrm{i}}{2}$
17. B

Sol.

Required area

$$
=2\left[\int_{1}^{2} \sqrt{y} d y+\int_{2}^{4} \sqrt{4-y} d y\right]=\frac{4}{3}[4 \sqrt{2}-1]
$$

18. A

Sol. $\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CA}}=\overrightarrow{0}$
$\alpha=2, \beta=4, \gamma-\delta=3$
$\frac{1}{2}|\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}|=5 \sqrt{6}$
$(\delta-9)^{2}+(2 \delta+12)^{2}+100-600$
$\Rightarrow \delta=5, \gamma=8$
Hence $\overline{\mathrm{CB}} \cdot \overline{\mathrm{CA}}=60$
19. B

Sol. Condition of co-planarity
$\left|\begin{array}{lll}\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{a}_{1} & \mathrm{a}_{2} \\ \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{~b}_{1} & \mathrm{~b}_{2} \\ \mathrm{z}_{2}-\mathrm{z}_{1} & \mathrm{c}_{1} & \mathrm{c}_{2}\end{array}\right|=0$
Where $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ are direction cosine of $1^{\text {st }}$ line and a_{2}, b_{2}, c_{2} are direction cosine of $2^{\text {nd }}$ line.
Now, solving options
Point $(-3,1,5) \&$ point $(-1,2,5)$

$$
\begin{aligned}
& \text { (1) }\left|\begin{array}{ccc}
-3 & 1 & 5 \\
1 & 2 & 5 \\
-2 & -1 & 0
\end{array}\right| \\
& =-3(5)-(10)+5(-1+4) \\
& =-15-10+15=-10
\end{aligned}
$$

(2) Point (-1, 2, 5)

$$
\left|\begin{array}{ccc}
-3 & 1 & 5 \\
-1 & 2 & 5 \\
-2 & -1 & 0
\end{array}\right|
$$

$$
=3(5)-(10)+5(1+4)
$$

$$
-25+25=0
$$

(3) Point (-1, 2, 5)
$\left|\begin{array}{ccc}-3 & 1 & 5 \\ -1 & 2 & 4 \\ -2 & -1 & 0\end{array}\right|$
$-3(4)-(8)+5(1+4)$
$-12-8+25=5$
(4) Point $(-1,2,5)$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
-3 & 1 & 5 \\
-1 & 2 & 5 \\
4 & 1 & 0
\end{array}\right| \\
& -3(-5)-(-20)+5(-1-8) \\
& 15+20-45=-10
\end{aligned}
$$

20. A

Sol. $\int_{0}^{\pi / 4} e^{-x} \tan ^{50} x d x$
$\left[-\mathrm{e}^{-\mathrm{y}}(\tan \mathrm{x})^{50}\right]_{0}^{\pi / 4}+\int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}(50)(\tan \mathrm{x})^{49} \sec ^{2} \mathrm{x}$
$=-\mathrm{e}^{-\pi / 4}+0+50 \int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}(50)(\tan \mathrm{x})^{49} \sec ^{2} \mathrm{x}$
$=-\mathrm{e}^{-\pi / 4}+50\left(\int_{0}^{\pi / 4}(\tan \mathrm{x})^{51}+(\tan \mathrm{x})^{49}\right) \mathrm{dx}$

Now, $\frac{-\mathrm{e}^{-\pi / 4}+\int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}(\tan \mathrm{x})^{50} \mathrm{dx}}{\int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}\left(\tan ^{49} \mathrm{x}+\tan ^{51} \mathrm{x}\right) \mathrm{dx}}$
$\frac{50 \int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}\left((\tan \mathrm{x})^{51}+(\tan \mathrm{x})^{49}\right) \mathrm{dx}}{\int_{0}^{\pi / 4} \mathrm{e}^{-\mathrm{x}}\left(\tan ^{49} \mathrm{x}+\tan ^{51}\right) \mathrm{dx}}$

Section - B (Numerical Value)

21. 269

Sol. $\bar{x}=50$
$\sum \mathrm{x}_{\mathrm{i}}=500$
$\sum \mathrm{x}_{\mathrm{i}_{\text {correct }}}=500+20+25-45-50=450$
$\sigma^{2}=144$
$\frac{\sum x_{i}^{2}}{10}-(50)^{2}=144$
$\sum \mathrm{x}_{\mathrm{i} \text { correct }}^{2}=\left(144+(50)^{2}\right) \times 10-(45)^{2}-(50)^{2}+(20)^{2}+(25)^{2}$

Correct variance $=\frac{\Sigma\left(\mathrm{x}_{\mathrm{i} \text { correct }}\right)^{2}}{10}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i} \text { correct }}}{10}\right)^{2}$
$=2294-(45)^{2}$
$=2294-2025=269$
22. 7

Sol. $\mathrm{R}=[(-4,4),(-3,3),(3,-2),(0,1),(0,0),(1,1)$, $(4,4),(3,3)\}$
For reflexive, add $\Rightarrow(-2,-2),(-4,-4),(-3,-3)$
For symmetric, add $\Rightarrow(4,-4),(3,-3),(-2,3)$, $(1,0)$
23. 10

Sol. $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{k}=1}^{10} \mathrm{kx}^{\mathrm{k}}$
$f(x)=x+2 x^{2}+\ldots \ldots+10 x^{10}$
$f(x) \cdot x=x^{2}+2 x^{3}+\ldots \ldots+9 x^{10}+10 x^{11}$
$f(x)(1-x)=x+x^{2}+x^{3}+\ldots \ldots .+x^{10}-10 x^{11}$
$f(x)=\frac{x\left(1-x^{10}\right)}{(1-x)^{2}}-\frac{10 x^{11}}{(1-x)}$
$f(x)=\frac{x-x^{11}-10 x^{11}+10 x^{12}}{(1-x)^{2}} \Rightarrow \frac{10 x^{12}-11 x^{11}+x}{(1-x)^{2}}$
Hence $2 f(2)+f^{\prime}(2)=119.2^{10}+1$
\Rightarrow So, $\mathrm{n}=10$
24. 16

Sol. For number to be divisible by '6' unit digit should be even and sum of digit is divisible by 3 .
$(2,1,3),(2,3,4),(2,5,5),(2,2,5),(2,2,2),(4,1$, 1), $(4,4,1),(4,4,4),(4,3,5)$
$2,1,3 \Rightarrow 312,132$
$2,3,4 \Rightarrow 342,432,234,324$
$2,5,5 \Rightarrow 552$
$2,2,5 \Rightarrow 252,522$
$2,2,2 \Rightarrow 222$
$4,1,1 \Rightarrow 114$
$4,4,1 \Rightarrow 414,144$
$4,4,4 \Rightarrow 444$
$4,3,5 \Rightarrow 354,534$
Total 16 numbers.
25. 825

Sol. $[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots .[\sqrt{120}]$
$\Rightarrow 1+1+1+2+2+2+2+2+3+3+\ldots \ldots+3$
$=7$ times
$+4+4+\ldots \ldots+4=9$ times $+\ldots \ldots . .10+10+\ldots \ldots .+$
$10=21$ times
$\Rightarrow \sum_{\mathrm{r}=1}^{10}(2 \mathrm{r}+1) \cdot \mathrm{r}$
$\Rightarrow 2 \sum_{\mathrm{r}=1}^{10}(2 \mathrm{r}+1) \cdot \mathrm{r}$
$\Rightarrow 2 \times \frac{10 \times 11 \times 21}{6}+\frac{10 \times 11}{2}$
$\Rightarrow 770+55$
$\Rightarrow 825$
26. 2

Sol.

27. 6

Sol. $\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x>1$
I.F. $=e^{\int \frac{4 x}{x^{2}-1} d x}$
I.F. $=\left(x^{2}-1\right)^{2}$
$\Rightarrow \mathrm{d}\left(\mathrm{y} \cdot\left(\mathrm{x}^{2}-1\right)^{2}\right)=\frac{\mathrm{x}+2}{\left(\mathrm{x}^{2}-1\right)^{\frac{5}{2}}} \cdot\left(\mathrm{x}^{2}-1\right)^{2}$
$\Rightarrow \int d\left(y \cdot\left(x^{2}-1\right)^{2}\right)=\int \frac{x+2}{\left(x^{2}-1\right)^{\frac{1}{2}}} d x$
$y\left(x^{2}-1\right)^{2}=\sqrt{x^{2}-1}+2 \ln \left(x+\sqrt{x^{2}-1}\right)+C$
$\Rightarrow \mathrm{C}=-\sqrt{3}$
So $\left(x^{2}-1\right)^{2}=\sqrt{x^{2}-1}+2 \ln \left(x+\sqrt{x^{2}-1}\right)-\sqrt{3}$
$\Rightarrow \alpha \beta \gamma=6$
28. 12

Sol. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\mathrm{ae}=2 \& \mathrm{e}=\frac{3}{2} \Rightarrow \mathrm{a}=\frac{4}{3}$
also $\mathrm{b}^{2}=\mathrm{a}^{2} \mathrm{e}^{2}-\mathrm{a}^{2} \Rightarrow 4-\frac{16}{9}$
$\Rightarrow \mathrm{b}^{2}=\frac{20}{9}$

Slope of tangent $=\frac{3}{2}$
So tangent equation will be
$\mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$
$\Rightarrow \mathrm{y}=\frac{3 \mathrm{x}}{2} \pm \sqrt{\frac{16}{9} \cdot \frac{9}{4}-\frac{20}{9}}$
$\Rightarrow y=\frac{3 x}{2} \pm \frac{4}{3} \Rightarrow\left|x_{\text {intercept }}\right|=\frac{8}{9}$
$\left|y_{\text {intercept }}\right|=\frac{4}{3}$
$\Rightarrow|6 \mathrm{a}|+|5 \mathrm{~b}|=\frac{48}{9}+\frac{60}{9}=\frac{109}{9}=12$
29. 41

Sol. $f_{n}(x)=\int_{0}^{\frac{\pi}{2}}\left(1+\sin x+\sin ^{2} x+\sin ^{3} x+\ldots . .+\sin ^{n-1}(x)\right)$
$\left(1+3 \sin \mathrm{x}+5 \sin ^{2} \mathrm{x}+\ldots . .+(2 \mathrm{n}-1)\right) \sin ^{\mathrm{n}-1} \mathrm{x}$. $\cos \mathrm{xdx}$

Multiply \& divide by $\sqrt{\sin x}$
$\int_{0}^{\frac{\pi}{2}}\left((\sin x)^{\frac{1}{2}}+(\sin x)^{\frac{3}{2}}+(\sin x)^{\frac{5}{2}}+(\sin x)^{\frac{7}{2}}+\ldots . .(\sin x)^{\frac{2 n-1}{2}}\right)$
$\left(1+3 \sin \mathrm{x}+5 \sin ^{2} \mathrm{x}+\ldots \ldots+(2 \mathrm{n}-1) \sin ^{\mathrm{n}-1}(\mathrm{x})\right)$

$$
\frac{\cos x}{\sqrt{\sin x}} d x
$$

Put $(\sin x)^{1 / 2}+(\sin x)^{3 / 2}+(\sin x)^{5 / 2}+$ \qquad $+(\sin$ $\mathrm{x})^{\mathrm{n}-1 / 2}=\mathrm{t}$
$\frac{1}{2} \frac{\left(1+3 \sin x+5 \sin ^{2} x+\ldots .(2 n-1) \sin ^{n-1} x\right)}{\sqrt{\sin x}} \cos x d x=d t$
$\mathrm{f}_{\mathrm{n}}=2 \int_{0}^{\mathrm{n}} \mathrm{t} d \mathrm{dt}$
$\mathrm{f}_{\mathrm{n}}=\mathrm{n}^{2}$
$\mathrm{f}_{21}-\mathrm{f}_{20}=(21)^{2}-(20)^{2}$
$=441-400$
$=41$
30. 12

Sol. $7^{103}=7 \times 7^{102}$
$=7 \times(49)^{51}$
$=7 \times(51-2)^{51}$
Remainder : $7 \times(-2)^{51}$
$\Rightarrow-7\left(2^{3} \cdot(16)^{12}\right)$
$\Rightarrow-56(17-1)^{12}$
Remainder $=-56 \times(-1)^{12}=-56+68=12$

PHYSICS

Section - A (Single Correct Answer)
31. D

Sol. Binding energy per nucleon is almost same for nuclei of mass number ranging 30 to 170 .
32. A

Sol. Truth table for NAND gate is

A	B	$Y=\overline{A \cdot B}$
0	0	1
0	1	1
1	0	1
1	1	0

On the basis of given input A and B the truth table is

A	B	Y
1	1	0
0	0	1
0	1	1
1	0	1
1	1	0
0	0	1
0	1	1

33. A

Sol.

No current will flow in capacitor in steady state, current flowing in the circuit in steady state
$I=\frac{3}{6+4}=\frac{3}{10}$
Potential difference on 6Ω resistance
$\mathrm{V}=6 \times \frac{3}{10}=1.8$ volt
Capacitor will have same potential so charge,
$\mathrm{q}=\mathrm{CV}=(4 \mu \mathrm{~F}) \cdot(1.8$ volt $)=7.2 \mu \mathrm{C}$.
34. B

Sol. $\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} \Rightarrow \mathrm{V}_{\mathrm{e}} \propto \sqrt{\frac{\mathrm{M}}{\mathrm{R}}}$
As $\frac{\mathrm{M}}{\mathrm{R}}$ increases $\Rightarrow \mathrm{V}_{\mathrm{e}}$ increases
Statement (I) is correct
Also $\mathrm{V}_{\mathrm{e}} \propto \frac{1}{\sqrt{\mathrm{R}}}$
As V_{e} depends upon R
\Rightarrow Statement (B) is incorrect
35. C

Sol. KE = PE
$\frac{1}{2} M \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} M \omega^{2} x^{2}$
$A^{2}-x^{2}=x^{2} \Rightarrow A^{2}=2 \times 2$
$\Rightarrow \mathrm{x}= \pm \frac{\mathrm{A}}{\sqrt{2}}$
36. D

Sol. Velocity of train A
$\mathrm{V}_{\mathrm{A}}=90 \frac{\mathrm{~km}}{\mathrm{hr}}=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s}$
Velocity of train B
$\mathrm{V}_{\mathrm{B}}=54 \frac{\mathrm{~km}}{\mathrm{hr}}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}$
Velocity of train B w.r.t. $\operatorname{train} A=\vec{V}_{B}-\vec{V}_{A}$
$=15-(-25) \mathrm{m} / \mathrm{s}=40 \mathrm{~m} / \mathrm{s}$
Time of crossing $=\frac{\text { length of train }}{\text { relative velocity }}$
(8) $=\frac{l}{40}$
$l=8 \times 40=320$ meter.
37. B

Sol. As gas is suddenly compressed, the processes is adiabatic.

Equation of gas for adiabatic process is
$\mathrm{PV}^{\gamma}=$ constant .
$\Rightarrow \mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$
$\Rightarrow \mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma}=\mathrm{P}_{2}\left(\frac{\mathrm{~V}_{0}}{4}\right)^{\gamma}$
$\Rightarrow \mathrm{P}_{2}=\mathrm{P}_{0}(4)^{\gamma}$
38. D

Sol. Terminal velocity of a spherical body in liquid
$\Rightarrow \quad V_{t} \propto r^{2}$
$\Rightarrow \frac{\Delta \mathrm{V}_{\mathrm{t}}}{\mathrm{V}_{\mathrm{t}}}=2 \cdot \frac{\Delta \mathrm{r}}{\mathrm{r}}$
$\Rightarrow \frac{\Delta \mathrm{V}_{\mathrm{t}}}{\mathrm{V}_{\mathrm{t}}} \times 100 \%=2 \cdot \frac{(0.1)}{5} \times 100=4 \%$
Also $V_{t} \propto r^{2}$
Reason \mathbf{R} is false
39. B

Sol. Direction of propagation of EM wave will be in the direction of $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$.
40. D

Sol. Distance $(s)=(2.5) t^{2}$
Speed (v) $\frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left\{(2.5) \mathrm{t}^{2}\right\}$
$\mathrm{v}=5 \mathrm{t}$
At $\mathrm{t}=5, \mathrm{v}=5 \times 5=25 \mathrm{~m} / \mathrm{s}$.
41. A

Sol. $\overrightarrow{\mathrm{F}}=-\mathrm{e}(\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})$
Force will be along - ve y-axis.
As magnetic force is \perp to velocity, path of electron must be a circle.
42. C

Sol. $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\frac{4}{3} \pi \mathrm{G} \rho \mathrm{R}$
$\therefore \frac{\mathrm{g}_{2}}{\mathrm{~g}_{1}}=\frac{\rho_{2}}{\rho_{1}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{1}{2} \times 1.5=\frac{3}{4}$
43. A

Sol. For resonance, $\phi=0$, hence both inductor $\&$ capacitor must be present. Also power factor is zero for pure inductor or pure capacitor hence both the component consume zero average power.
44. A

Sol. $F_{c}=m \omega^{2} r=200 \times(0.2)^{2} \times 70=560 \mathrm{~N}$
45. B

Sol. Minimum length of antenna should be $\lambda / 4$
46. A

Sol. UV rays have maximum frequency hence are most effective for emission of electrons from a metallic surface.
$\mathrm{KE}_{\text {max. }}=\mathrm{hf}-\mathrm{hf}_{0}$
47. B

Sol. Divide $\mathrm{q}=10 \mu \mathrm{C}$ into two parts $\mathrm{x} \& \mathrm{q}-\mathrm{x}$.
$F=\frac{K x(q-x)}{r^{2}}$
For F to be maximum
$\frac{d F}{d x}=\frac{K}{r^{2}}(q-2 x)=0$
$x=\frac{q}{2}$
48. A

Sol. X and $\frac{\mathrm{a}}{\mathrm{Y}^{2}}$ have same dimensions
Y and b have same dimensions

$$
\begin{aligned}
\therefore \quad[\mathrm{a}] & =\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right] \\
& {[\mathrm{b}] }
\end{aligned}=\left[\mathrm{L}^{3}\right] \quad \$
$$

$\frac{[\mathrm{a}]}{[\mathrm{b}]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$ has dimensions of energy
49. B

Sol. Given that $\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{2}{1}$

$$
\frac{I_{\max }}{I_{\min }}=\left(\frac{\mathrm{A}_{1}+\mathrm{A}_{2}}{\mathrm{~A}_{1}-\mathrm{A}_{2}}\right)^{2}=\frac{9}{1}=9: 1
$$

50. B

Sol. Mean free path
$\lambda=\frac{\mathrm{RT}}{\sqrt{2} \pi \mathrm{~d}^{2} \mathrm{~N}_{\mathrm{A}} \mathrm{P}}$
$\lambda \propto \mathrm{T}$
$\frac{1500 \mathrm{~d}}{\lambda}=\frac{273}{373}$
$\lambda=2049 \mathrm{~d}$

Section - B (Numerical Value)

51. 5

Sol.

Let power of each part is P_{1}, then
$\mathrm{P}_{1}+\mathrm{P}_{1}=\mathrm{P}=1 / \mathrm{f}$
$2 \mathrm{P}_{1}=1 / 0.1=10$
$\mathrm{P}_{1}=5 \mathrm{D}$
52. 4125

Sol. $\mathrm{E}=\mathrm{E}_{1}-\mathrm{E}_{2}=\frac{\mathrm{hc}}{\lambda_{1}}-\frac{\mathrm{hc}}{\lambda_{2}}=\mathrm{hc}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)$

$$
\begin{aligned}
& =6.6 \times 10^{-34} \times 3 \times 10^{8}\left(\frac{1}{500 \times 10^{-9}}-\frac{1}{600 \times 10^{-9}}\right) \\
& =6.6 \times 10^{-20} \mathrm{~J} \\
& =\frac{6.6 \times 10^{-20}}{1.6 \times 10^{-19}} \mathrm{eV}=4.125 \times 10^{-1} \mathrm{eV} \\
& =4125 \times 10^{-4} \mathrm{eV}
\end{aligned}
$$

53. 5440

Sol.

$F_{B A}=\frac{K q(2 q)}{\left(\frac{3}{4} R\right)^{2}}=\frac{32 K q^{2}}{9 R^{2}}$
$F_{B C}=\frac{K(2 q)(2 q)}{\left(\frac{R}{4}\right)^{2}}=\frac{64 K^{2}}{R^{2}}$
$\mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{BC}}-\mathrm{f}_{\mathrm{BA}}=\frac{544 \mathrm{Kq}^{2}}{9 \mathrm{R}^{2}}$
$=\frac{544 \times 9 \times 10^{9} \times\left(2 \times 10^{-6}\right)^{2}}{9 \times\left(2 \times 10^{-2}\right)^{2}}=5440 \mathrm{~N}$
54. 75

Sol. $I_{1}=\frac{12}{3+9}=1 \mathrm{~A}$

$$
\mathrm{I}_{2}=\frac{12}{4+2}=2 \mathrm{~A}
$$

$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}=3 \mathrm{I}_{1}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}=2 \times 4=8 \mathrm{~V}$
Subtracting eq. (1) from eq. (2)
$\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V} \Rightarrow \mathrm{~V}=5 \mathrm{~V}$
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \times 6 \times 5^{2}=75 \mu \mathrm{~J}$
55. 60

Sol. $\Delta \mathrm{Q}=-\frac{\Delta \phi}{\mathrm{R}}=-\left(\frac{\phi_{2}-\phi_{1}}{\mathrm{R}}\right)$
$\phi_{1}=\mathrm{NBA}$
$\phi_{2}=-\mathrm{NBA}$
$\therefore \Delta \mathrm{Q}=\frac{2 \mathrm{NBA}}{\mathrm{R}}=\frac{2 \times 100 \times 1.5 \times 24 \times 10^{-4}}{12}$
$=6 \times 10^{-2} \mathrm{C}=60 \mathrm{mC}$
56. 500

Sol. $\mathrm{f}=\frac{1}{2 l} \sqrt{\frac{\mathrm{~T}}{\mu}}$
($\mathrm{T}:$ Tension)
$\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}$
$\left(\frac{50}{30}\right)^{2}=\frac{\mathrm{mg}}{180 \mathrm{~g}} \Rightarrow \mathrm{~m}=\frac{25}{9} \times 180=500$ gram
57. 15

Sol. $\tau=\mathrm{I} \alpha$
$\Rightarrow \quad \mathrm{FR}=\mathrm{mR}^{2} \alpha$
$\alpha=\frac{\mathrm{F}}{\mathrm{mR}}=\frac{52.5}{5 \times 0.7}=15 \mathrm{rad} \mathrm{s}^{-2}$
58. 3

Sol. $\mathrm{E}_{1}=\frac{1}{2} \mathrm{mu}^{2}-0=\frac{1}{2} \mathrm{mu}^{2}=\mathrm{E}$
$\mathrm{E}_{2}=\frac{1}{2} \mathrm{~m}(2 \mathrm{u})^{2}-\frac{1}{2} \mathrm{mu}^{2}=\frac{3}{2} \mathrm{mu}^{2}=3 \mathrm{E}$
59. 40

Sol.

Let the temperature of contact surface is T , then $\mathrm{H}_{\mathrm{A}}=\mathrm{H}_{\mathrm{B}}$
$\frac{\mathrm{K}_{\mathrm{A}} \mathrm{A}\left(\mathrm{T}_{\mathrm{A}}-\mathrm{T}\right)}{\mathrm{L}}=\frac{\mathrm{K}_{\mathrm{B}} \mathrm{A}\left(\mathrm{T}-\mathrm{T}_{\mathrm{B}}\right)}{\mathrm{L}}$
$84(100-T)=126(T-0)$
$2(100-T)=3 T$
$200-2 \mathrm{~T}=3 \mathrm{~T}$
$\mathrm{T}=40^{\circ} \mathrm{C}$
60. 2

Sol. For equilibrium
$\mathrm{Mg}=\mathrm{I} / \mathrm{B}$
$\mathrm{I}=\frac{\mathrm{mg}}{l \mathrm{~B}}=\frac{40 \times 10^{-3} \times 10}{50 \times 10^{-2} \times 0.4}=2 \mathrm{~A}$

CHEMISTRY

Section - A (Single Correct Answer)
61. B

Sol. In wet testing, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is used as group reagent for $5^{\text {th }}$ group cations $\left(\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}\right)$.
$\mathrm{Ba}^{+2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightarrow \underset{\text { (white precipitate) }}{\mathrm{BaCO}_{3} \downarrow}+\mathrm{NH}_{4}^{\oplus}$
62. C

Sol. Asparagine has only one basic functional group in its chemical structure.

Others are basic amino acid with more than one basic functional group.
63. D

Sol. Statement I is correct, Ellingham diagram can be constructed for formation of oxides, sulphides and halides of metals. (Ref : NCERT)
Statement II is incorrect because Ellingham diagram consists of $\Delta_{f} G^{\circ}$ vs T for formation of oxides of elements.
64. C

Sol. Tyndall effect is observed only when the following two conditions are satisfied
(a) The diameter of the dispersed particle is not much smaller than the wave length of light used.
(b) Refractive indices of dispersed phase and dispersion medium differ greatly in magnitude.
65. B

Sol. $\left[\mathrm{Cr}(\mathrm{Ox})_{2} \mathrm{ClBr}\right]^{-3}$

- No. of isomers -

- This structure has plane of symmetry, So no optical isomerism will be shown.

- This structure does not contain plane of symmetry, So two forms d as well as 1 will be shown.

66. A

Sol. As per NCERT (s block), the better method of preparation of BeF_{2} is heating $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4} \xrightarrow{\Delta} \mathrm{BeF}_{2}+\mathrm{NH}_{4} \mathrm{~F}
$$

67. B

Sol. Source NCERT
Since the isotopes have the same electronic configuration, they have almost same chemical properties. The only difference is in their rates of reactions, mainly due to their different enthalpy of bond dissociation.
68. B

Sol.
 Tropolone is an aromatic compound and has 8π electrons $\left(6 \pi \mathrm{e}^{-}\right.$are endocyclic and $2 \pi \mathrm{e}^{-}$are exocyclic) and π electrons of $\quad \mathrm{C}=\mathrm{O}$ group in tropolone is not involved in aromaticity.

aromatic compound ($6 \pi \mathrm{e}$)
69. D

Sol.

70. A

Sol.

71. D

Sol. Green house gases are $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, water vapour, nitrous oxide, $\mathrm{CFC}_{\mathrm{s}}$ and ozone.
72. B

Sol.

- Hexamethylenediamine on reaction with adipic acid forms Nylon 6, 6 which shows H-bonding due to presence of amide group.
- $\mathrm{AlEt}_{3}+\mathrm{TiCl}_{4}$ is Ziegler-Natta catalyst used to prepare high density polyethylene.
- 2-chloro-1, 3-butadiene (chloroprene) is monomer of neoprene which is a rubber (an elastomer)
- Phenol - formaldehyde forms Bakelite which is heavily branched (cross-linked) polymer

73. B

Sol.

119.5°
104.5°
Both are bent in shape.
Bond angle of $\mathrm{SO}_{2}\left(\mathrm{sp}^{2}\right)$ is greater than that of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{sp}^{3}\right)$ due to higher repulsion of multiple bonds.
74. D

Sol. Only I^{-}among halides can be oxidised to iodine by oxygen in acidic medium.
$4 \mathrm{I}_{(\mathrm{aq})}^{-}+4 \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{I}_{2(\mathrm{~S})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
75. A

Sol. Adiabatic boundary does not allow heat exchange thus heat generated in container can't escape out thereby increasing the temperature.
In case of Diathermic container, heat flow can occur to maintain the constant temperature.
76. C

Sol. Acidic strength α - I effect

$$
\alpha \frac{1}{+\mathrm{I}} \text { effect }
$$

F, Cl exerts -I effect, Methyl exerts +I effect, C is least acidic.
Among A and B ; since inductive effect is distance dependent, Extent of -I effect is higher in A followed by B even though F is stronger electron withdrawing group than Cl . Thus, A is more acidic than B.
77. A

Sol. For a given metal $\Delta_{\mathrm{f}} \mathrm{H}^{\circ}$ always becomes less negative from fluoride to iodide.
78. B

Sol.

79. A

Sol.

Number of covalent bond formed by Boron is 4 Oxidation number of fluorine is -1 ,
Oxidation number of $\mathrm{B}+4 \times(-1)=-1$, Thus, Oxidation number of $\mathrm{B}=+3$
80. B

Sol. Complex with maximum number of unpaired electron will exhibit maximum attraction to an applied magnetic field.
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow \mathrm{d}^{10}$ system $\rightarrow \mathrm{t}_{2 \mathrm{ag}}^{6} \mathrm{eg}^{4}, 0$ unpaired e^{-}
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow \mathrm{d}^{7}$ system $\rightarrow \mathrm{t}_{2 q}^{5} \mathrm{eg}^{2}, 3$ unpaired e^{-}
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} \rightarrow \mathrm{d}^{6}$ system $\rightarrow \mathrm{t}_{{ }^{6}}^{6} \mathrm{eg}^{0}, 0$ unpaired e^{-}
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+} \rightarrow \mathrm{d}^{8}\right.$ system $\rightarrow \mathrm{t}_{28}^{6} \mathrm{eg}^{2}, 2$ unpaired e^{-}

Section - B (Numerical Value)

81. 40

Sol. Mole of $\mathrm{AgBr}=\frac{0.376}{188}$
Mole of $\mathrm{Br}^{-}=$Mole of $\mathrm{AgBr}=\frac{0.376}{188}$
Mass of $\mathrm{Br}^{-}=\frac{0.376}{188} \times 80$
$\%$ of $\mathrm{Br}^{-}=\frac{0.376 \times 80}{188 \times 0.4} \times 100=40 \%$
82. 100

Sol. $\mathrm{M}_{2} \mathrm{CO}_{3}+\underset{\text { Excess }}{2 \mathrm{HCl}} \rightarrow \underset{0.02 \text { mole }}{2 \mathrm{MCl}}+\mathrm{H}_{2} \mathrm{O}+\underset{0.01 \text { mole }}{\mathrm{CO}_{2}}$
From principle of atomic conservation of carbon atom,
Mole of $\mathrm{M}_{2} \mathrm{CO}_{3} \times 1=$ Mole of $\mathrm{CO}_{2} \times 1$
$\frac{1 \mathrm{gm}}{\text { Molar mass of } \mathrm{M}_{2} \mathrm{CO}_{3}}=0.01 \times 1$
\therefore Molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}=100 \mathrm{gm} / \mathrm{mole}$
83. 23

Sol.

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{x}=14 \\
& \mathrm{y}=2 \\
& \mathrm{z}=7
\end{aligned}
$$

Hence $(x+y+z)=14+2+7=23$
84. 17

Sol. Formula of borax is $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
85. 25

Sol. $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
& \mathrm{pH}=14 ; \mathrm{pOH}=0 ;\left[\mathrm{OH}^{-}\right]=1 \mathrm{M} \\
& \therefore\left[\mathrm{Cu}^{2+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{[1]^{2}}=10^{-20} \mathrm{M} \\
& \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \\
& \mathrm{E}=\mathrm{E}^{0}-\frac{0.059}{2} \log _{10} \frac{1}{\left[\mathrm{Cu}^{2+}\right]} \\
& =0.34-\frac{0.059}{2} \log _{10} \frac{1}{10^{-20}} \\
& =-0.25=-25 \times 10^{-2}
\end{aligned}
$$

86. 458

Sol. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

Initially	5 mmol	2 mmol	0	0
after Rxn	3 mmol	0	2 mmole	2 mmole

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log _{10} \frac{[\text { salt }]}{[\text { acid }]} \\
& \mathrm{pH}=4.76+\log _{10} \frac{2}{3} \\
& \mathrm{pH}=4.58=458 \times 10^{-2}
\end{aligned}
$$

87. 2200

Sol. ${ }_{\frac{1}{2}}=10$ minutes

$$
\begin{aligned}
& \left(\mathrm{P}_{\mathrm{A}}\right)_{30 \text { min. }}=\left(\mathrm{P}_{\mathrm{A}}\right)_{0}\left(\frac{1}{2}\right)^{30 / 10} \\
& \left(\mathrm{P}_{\mathrm{A}}\right)_{30 \text { min. }}=100 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

$$
\mathrm{A}(\mathrm{~g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g})
$$

at $\mathrm{t}=0 \quad 800 \mathrm{~mm} \quad 0 \quad 0$
at $\mathrm{t}=30 \quad 100 \mathrm{~mm} \quad 1400 \mathrm{~mm} \quad 700 \mathrm{~mm}$
Total pressure after 30 minutes $=2200 \mathrm{~mm} \mathrm{Hg}$.
88. 0

Sol. Orbital angular momentum $=\sqrt{1(\ell+1)} \frac{\mathrm{h}}{2 \pi}$
Value of ℓ for $s=0$
89. 17

Sol. $\sqrt{3} a=4 r$
$\sqrt{3} \times 4=4 \mathrm{r}$
$\mathrm{r}=1.732 \AA$
$=17.32 \times 10^{-1}$
90. 116

Sol. Amount of solvent $=100-(29.25+19)$

$$
=51.75 \mathrm{~g}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\left[\frac{2 \times 29.25 \times 1000}{58.5 \times 51.75}+\frac{3 \times 19 \times 1000}{95 \times 51.75}\right] \times 0.52$
$\Delta \mathrm{T}_{\mathrm{b}}=16.075$
$\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}-\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solvent }}$
$\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}=100+16.07$

$$
=116.07^{\circ} \mathrm{C}
$$

