10-April-2023 (Morning Batch): JEE Main Paper

MATHEMATICS

Section - A (Single Correct Answer)

1.	Let O be the origin and the position vector of the point P be $-\hat{i} - 2\hat{j} + 3\hat{k}$. If the position vectors of the
	points A, B and C are $-2\hat{i}+\hat{j}-3\hat{k}$, $2\hat{i}+4\hat{j}-2\hat{k}$ and $-4\hat{i}+2\hat{j}-\hat{k}$ respectively then the projection of the
	vector \overrightarrow{OP} on a vector perpendicular to the vectors \overrightarrow{AB} and \overrightarrow{AC} is

- (A) 3 (B) $\frac{8}{3}$ (C) $\frac{10}{3}$ (D) $\frac{7}{3}$
- 2. Let the ellipse E: $x^2 + 9y^2 = 9$ intersect the positive x- and y-axes at the points A and B respectively Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle which vertices A, P and the origin O is $\frac{m}{n}$, where m and n are coprime, then m n is equal to
 - (A) 18 (B) 16 (C) 17 (D) 15
- 3. If $f(x) = \frac{(\tan 1^{\circ})x + \log_{e}(123)}{x \log_{e}(1234) (\tan 1^{\circ})}$, x > 0, then the least value of $f(f(x)) + f\left(f\left(\frac{4}{x}\right)\right)$ is
 - (A) 8 (B) 4 (C) 2 (D) 0
- 4. A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area (in cm²) is equal to
 - (A) 675 (B) 1025 (C) 800 (D) 900
- 5. Let f be a differentiable function such that $x^2 f(x) x = 4 \int_0^x t f(t) dt$, $f(t) = \frac{2}{3}$. Then 18 f(3) is equal to
 - (A) 160 (B) 210 (C) 180 (D) 150
- 6. A line segment AB of length λ moves such that the points A and B remain on the periphery of a circle of radius λ . Then the locus of the point, that divides the line segment AB in the ratio 2:3, is a circle of radius
 - $(A) \quad \frac{3}{5}\lambda \qquad \qquad (B) \quad \frac{\sqrt{19}}{7}\lambda \qquad \qquad (C) \quad \frac{2}{3}\lambda \qquad \qquad (D) \quad \frac{\sqrt{19}}{5}\lambda$
- 7. Let the complex number z = x + iy be such that $\frac{2z 3i}{2z + i}$ is purely imaginary. If $x + y^2 = 0$, then $y^4 + y^2 y$ is equal to:
 - (A) $\frac{3}{2}$ (B) $\frac{4}{3}$
 - (C) $\frac{2}{3}$ (D) $\frac{3}{4}$

8.	$96\cos\frac{\pi}{33}\cos\frac{2\pi}{33}\cos\frac{4\pi}{33}\cos\frac{4\pi}{33}\cos\frac{\pi}$	$\cos\frac{8\pi}{33}\cos\frac{16\pi}{33}$ is equal to:		
	(A) 3	(B) 2	(C) 4	(D) 1
9.	If A is a 3×3 matrix an	d A = 2, then 3 adj (3A		
	(A) $3^{11} \cdot 6^{10}$	(B) $3^{12} \cdot 6^{10}$	(C) $3^{10} \cdot 6^{11}$	(D) $3^{12} \cdot 6^{11}$
10.	The slope of tangent at a	ny point (x, y) on a curve	$y = y(x)$ is $\frac{x^2 + y^2}{2xy}$	• $x > 0$. If $y(2) = 0$, then a value of
	y(8) is			
	(A) $-2\sqrt{3}$	(B) $4\sqrt{3}$	(C) $2\sqrt{3}$	(D) $-4\sqrt{2}$
11.	For the system of linear	equations		
	2x - y + 3z = 5			
	3x + 2y - z = 7			
	$4x + 5y + \alpha z = \beta$			
	Which of the following i	s NOT correct?		
	(A) The system has inf	initely many solutions for	$\alpha = -5$ and $\beta = 9$	
	(B) The system has a u	nique solution for $\alpha \neq -5$	and $\beta = 8$	
	(C) The system has inf	initely many solutions for	$\alpha = -6$ and $\beta = 9$	
	(D) The system is income	nsistent for $\alpha = -5$ and $\beta =$	= 8	
12.	Let N denotes the sum of	the numbers obtained who	en two dice are rolle	ed. If the probability that $2^N < N!$ is
	$\frac{m}{n}$, when m and n are c	oprime, then 4m – 3n is ed	qual to	
	(A) 8	(B) 16	(C) 10	(D) 12
13.	Let P be the point of in	tersection of the line $\frac{x+}{3}$	$\frac{3}{1} = \frac{y+2}{1} = \frac{1-z}{2}$ and	and the plane $x + y + z = 2$. If the
	distance of the point P fr	om the plane $3x - 4y + 12$	z = 32 is q, then q a	and 2q are the roots of the equation
	(A) $x^2 - 18x - 72 = 0$		(B) $x^2 + 18x +$	72 = 0
	(C) $x^2 - 18x + 72 = 0$		(D) $x^2 + 18x -$	72 = 0
14.	The negation of the state	ement $(p \lor q) \land (q \lor (\sim r))$	is	
	(A) $((\sim p) \lor r) \land (\sim q)$		(B) ((~ p) ∨ (~	$(q)) \wedge (\sim r)$
	(C) $((\sim p) \lor (\sim q)) \lor (\sim q)$	r)	(D) $(p \lor r) \land (q \lor r) \land (q \lor r)$	~ q)
15.	If the coefficient of x^7 in	$\left(ax - \frac{1}{bx^2}\right)^{13} \text{ and the coeff}$	efficient of x^{-5} in $\left(\right.$	$ax + \frac{1}{bx^2}$ are equal, then a^4b^4 is
	equal to:			
	(A) 44	(B) 22	(C) 11	(D) 33
16.		gle ABC be $(2, 4, 6)$ and $(0x + 2y + 4z = 11)$ is (α, β, γ)		entroid be $(2, 1, -1)$. If the image of α is equal to
	(A) 72		(B) 74	
	(C) 76		(D) 70	

17. The shortest distance between the lines $\frac{x+2}{1} = \frac{y}{-2} = \frac{z-5}{2}$ and $\frac{x-4}{1} = \frac{y-1}{2} = \frac{z+3}{0}$ is (A) 6 18. If $I(x) = \int e^{\sin^2 x} (\cos x \sin 2x - \sin x) dx$ and I(0) = 1, then $I\left(\frac{\pi}{3}\right)$ is equal to: (C) $\frac{1}{2}e^{\frac{3}{4}}$ (D) $-e^{\frac{3}{4}}$ (A) $-\frac{1}{2}e^{\frac{3}{4}}$ (B) $e^{\frac{3}{4}}$ 19. Let the first term 'a' and the common ratio 'r' of a geometric progression be positive integers. If the sum of its squares of first three terms is 33033, then the sum of these three terms is equal to (B) 210 (A) 231 20. An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $\overrightarrow{OP} = \overrightarrow{u}$, $\overrightarrow{OR} = \overrightarrow{v}$ and $\overrightarrow{OQ} = \alpha \overrightarrow{u} + \beta \overrightarrow{v}$, then α , β^2 are the roots of the equation (A) $x^2 - x - 2 = 0$ (B) $3x^2 + 2x - 1 = 0$ (C) $x^2 + x - 2 = 0$ (D) $3x^2 - 2x - 1 = 0$ SECTION - B 21. The coefficient of x^7 in $(1-x+2x^3)^{10}$ is _____. 22. Let $f: (-2, 2) \to IR$ be defined by $f(x) = \begin{cases} x[x], & -2 < x < 0 \\ (x-1)[x], & 0 \le x < 2 \end{cases}$ Where [x] denotes the greatest integer function. If m and n respectively are the number of points in (-2, 2) at which y = |f(x)| is not continuous and not differentiable, then m + n is equal to_ 23. The sum of all those terms, of the arithmetic progression 3, 8, 13,...... 373, which are not divisible by 3, is equal to_____ 24. Let a common tangent to the curves $y^2 = 4x$ and $(x - 4)^2 + y^2 = 16$ touch the curves at the points P and Q. Then $(PQ)^2$ is equal to The number of permutations, of the digits 1, 2, 3,7 without repetition, which neither contain the string 153 nor the string 2467, is_____ 26. Let a, b, c be three distinct positive real numbers $\left(c \neq \frac{1}{2}\right)$ such that $(2a)^{\log_e a} = (bc)^{\log_e b}$ and $b^{\log_e 2} = a^{\log_e c}$. Then 6a + 5bc is equal to 27. Let y = p(x) be the parabola passing through the points (-1, 0), (0, 1) and (1, 0) whose axis is parallel to the y-axis. If the area of the region $\{(x, y): (x+1)^2 + (y-1)^2 \le 1, y \le p(x)\}$ is A, then $12(\pi - 4A)$ is equal to 28. If the mean of the frequency distribution

Class	0-10	10-20	20-30	30-40	40-50
Frequency	2	3	X	5	4

is 28, then its variance is _____.

- Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple played in a match, is 840, then the total numbers of persons who participated in the tournament
- 30. The number of elements in the set $\{n \in \mathbb{Z} : |n^2 10n + 19| < 6\}$ is _____.

PHYSICS

Section - A (Single Correct Answer)

31. A physical quantity P is given as $P = \frac{a^2b^3}{c\sqrt{d}}$. The percentage error in the measurement of a, b, c and d are

1%, 2%, 3% and 4% respectively. The percentage error in the measurement of quantity P will be

- (A) 13%
- (B) 14%
- (C) 12%
- (D) 16%

32. Assuming the earth to be a sphere of uniform mass density, the weight of a body at a depth $d = \frac{R}{2}$ from

the surface of earth, if its weight on the surface of earth is 200 N, will be: (Given R = Radius of earth)

(A) 400 N

(B) 500 N

(C) 300 N

(D) 100 N

33. A zener diode of power rating 1.6 W is to be used as voltage regulator. If the zener diode has a breakdown of 8V and it has to regulate voltage fluctuating between 3V and 10 V. The value of resistance R_s for safe operation of diode will be:

- (A) 13.3Ω
- (B) 12Ω
- (C) 10Ω
- (D) 13Ω

34. The range of the projectile projected at an angle of 15° with horizontal is 50 m. If the projectile is projected with same velocity at an angle of 45° with horizontal, then its range will be:

- (A) 50 m
- (B) $50\sqrt{2}$ m
- (C) 100 m
- (D) $100\sqrt{2}$ m

35. A carrier wave of amplitude 15V is modulated by a sinusoidal base band signal of amplitude 3V. The ratio of maximum amplitude to minimum amplitude in an amplitude modulated wave is:

- (A) 2
- (B) 3/2
- (C) 5
- (D) 1

36. The angular momentum for the electron in Bohr's orbit is L. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be :

- (A) L/2
- (B) zero
- (C) L
- (D) 2L

37. A particle of mass m moving with velocity v collides with a stationary particle of mass 2m. After collision, they stick together and continue to move together with velocity

- (A) v
- (B) v/2
- (C) v/3
- (D) v/4

38. Given below are two statement:

Statement I: If the number of turns in the coil of a moving coil galvanometer is doubled then the current sensitivity becomes double.

Statement II: Increasing current sensitivity of a moving coil galvanometer by only increasing the number of turns in the coil will also increase its voltage sensitivity in the same ratio:

In the light of the above statement, choose the correct answer from the options given below:

- (A) Statement I is false but Statement II is true
- (B) Both Statement I and Statement II are true
- (C) Both Statement I and Statement II are false
- (D) Statement I is true but Statement II is false

39. Match List I with List II:

	List-I		List II
(A)	3 Translational degrees of freedom	(I)	Monoatomic gases
(B)	3 Translational, 2 rotational degrees	(II)	Polyatomic gases
	of freedoms		
(C)	3 Translational, 2 rotational and 1	(III)	Rigid diatomic gases
	vibrational degrees of freedom		
(D)	3 Translational, 3 rotational and more	(IV)	Nonrigid diatomic gases
	than one vibrational degrees of freedom		

Choose the correct answer from the options given below:

$$(A) (A) - (IV), (B) - (III), (C) - (II), (D) - (I)$$

(B)
$$(A) - (IV), (B) - (II), (C) - (I), (D) - (III)$$

$$(C)$$
 $(A) - (I), (B) - (III), (C) - (IV), (D) - (II)$

(D)
$$(A) - (I), (B) - (IV), (C) - (III), (D) - (II)$$

40. The equivalent resistance of the circuit shown below between points a and b is :

- (A) 24Ω
- (B) 3.2Ω
- (C) 20Ω
- (D) 16Ω
- 41. Consider two containers A and B containing monoatomic gases at the same Pressure (P), Volume (V) and Temperature (T). The gas in A is compressed isothermally to 1/8 of its original volume while the gas B is compressed adiabatically to 1/8 of its original volume. The ratio of final pressure of gas in B to that of gas in A is:
 - (A) 8
- (B) $8^{3/2}$
- (C) 1/8
- (D) 4

42. Given below are two statements:

Statement I: Maximum power is dissipated in a circuit containing an inductor, a capacitor and a resistor connected in series with an AC source, when resonance occurs

Statement II: Maximum power is dissipated in a circuit containing pure resistor due to zero phase difference between current and voltage.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Statement I is false but Statement II is true
- (B) Statement I is true but Statement II is false
- (C) Both Statement I and Statement II are true
- (D) Both Statement I and Statement II are false
- 43. Two satellites of masses m and 3m revolve around the earth in circular orbits of radii r & 3r respectively. The ratio of orbital speeds of the satellites respectively is:
 - (A) 1:1
- (B) 3:1
- (C) $\sqrt{3}:1$
- (D) 9:1

44. Given below are two statements:

Statement I: Pressure in a reservoir of water is same at all points at the same level of water.

Statement II: The pressure applied to enclosed water is transmitted in all directions equally.

In the light of the above statements, choose the correct answer from the options given below:

- (A) Statement I is false but Statement II is true
- (B) Both Statement I and Statement II are true
- (C) Statement I is true but Statement II is false
- (D) Both Statement I and Statement II are false

45. The equivalent capacitance of the combination shown is

- (A) $\frac{C}{2}$
- (B) 4C
- (C)2C
- (D) $\frac{5}{3}$ C
- The energy of an electromagnetic wave contained in a small volume oscillates with
 - (A) zero frequency

- half the frequency of the wave (B)
- (C) double the frequency of the wave
- (D) the frequency of the wave
- 47. An object is placed at a distance of 12 cm in front of a plane mirror. The virtual and erect image is formed by the mirror. Now the mirror is moved by 4 cm towards the stationary object. The distance by which the position of image would be shifted, will be:
 - (A) 4 cm towards mirror

8 cm towards mirror (B)

(C) 8 cm away from mirror

- (D) 2 cm towards mirror
- The de Broglie wavelength of a molecule in a gas at room temperature (300 K) is λ_1 . If the temperature of the gas is increased to 600 K, then the de Broglie wavelength of the same gas molecule becomes
 - (A) $\frac{1}{\sqrt{2}}\lambda_1$
- (C) $\frac{1}{2}\lambda_1$
- 49. A particle executes S.H.M. of amplitude A along x-axis. At t = 0, the position of the particle is $x = \frac{A}{2}$ and it moves along positive x-axis the displacement of particle in time t I $x = A \sin(\omega t + \delta)$, then the value δ will be:
- (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$
- 50. The position-time graphs for two students A and B returning from the school to their homes are shown in figure:

(A) A lives closer to the school

- (B) B lives closer to the school
- (C) A takes lesser time to reach home
- A travels faster than B (D)

(E) B travels faster than A

Choose the correct answer from the options given below:

(A) (A) and (E) only

(B) (B) and (E) only

(C) (A), (C) and (E) only

(A), (C) and (D) only (D)

SECTION - B

- 51. Unpolarised light of intensity 32 Wm⁻² passes through the combination of three polaroids such that the pass axis of the last polaroid is perpendicular to that of the pass axis of first polaroid. If intensity of emerging light is 3 Wm⁻², then the angle between pass axis of first two polaroids is ____
- 52. A closed circular tube of average radius 15 cm, whose inner walls are rough, is kept in vertical plane. A block of mass 1 kg just fit inside the tube. The speed of block is 22 m/s, when it is introduced at the top of tube. After completing five oscillations, the block stops at the bottom region of tube. The work done by the tube on the block is _____ J. [Given $g = 10 \text{ m/s}^2$]

53. If the earth suddenly shrinks to $\frac{1}{64}$ th of its original volume with its mass remaining the same, the period

of rotation of earth becomes $\frac{24}{x}h$. The value of x is _____.

- 54. The current required to be passed through a solenoid of 15 cm length and 60 turns in order to demagnetise a bar magnet of magnetic intensity 2.4×10^3 Am⁻¹ is _____ A.
- 55. A 1 m long metal rod XY completes the circuit as shown in figure. The plane of the circuit is perpendicular to the magnetic field of flux density 0.15 T. If the resistance of the circuit is 5Ω , the force needed to move the rod in direction, as indicated, with a constant speed of 4 m/s will be $_{---}$ 10⁻³ N.

- 56. A transverse harmonic wave on a string is given by $y(x, t) = 5 \sin(6t + 0.003x)$ where x and y are in cm and t in sec. The wave velocity is _____ ms-1.
- The decay constant for a radioactive nuclide is $1.5 \times 10^{-5} \ s^{-1}$. Atomic of the substance is 60 g mole⁻¹, ($N_A = 6 \times 10^{23}$). The activity of 1.0 μg of the substance is _____ \times 10¹⁰ Bq.
- 58. Three concentric spherical metallic shells X, Y and Z of radius a, b and c respectively [a < b < c] have surface charge densities σ , $-\sigma$ and σ , respectively. The shells X and Z are at same potential. If the radii of X & Y are 2 cm and 3 cm, respectively. The radius of shell Z is _____ cm.
- 59. 10 resistors each of resistance 10Ω can be connected in such as to get maximum and minimum equivalent resistance. The ratio of maximum and minimum equivalent resistance will be . .

60. Two wires each of radius 0.2 cm and negligible mass, one made of steel and other made of brass are loaded as shown in the figure. The elongation of the steel wire is $___ \times 10^{-6}$ m. [Young's modulus for steel = 2×10^{11} Nm⁻² and g = 10 ms⁻²]

CHEMISTRY

Section - A (Single Correct Answer)

- 61. Using column chromatography, mixture of two compounds 'A' and 'B' was separated. 'A' eluted first, this indicates 'B' has:
 - (A) low R_f, weaker adsorption

(B) high R_s, stronger adsorption

(C) high R_f, weaker adsorption

- (D) low R_f, stronger adsorption
- 62. Prolonged heating is avoided during the preparation of ferrous ammonium sulphate to:
 - (A) prevent oxidation

(B) prevent reduction

(C) prevent hydrolysis

- (D) prevent breaking
- 63. Lime reacts exothermally with water to give 'A' which has low solubility in water. Aqueous solution of 'A' is often used for the test of CO₂, a test in which insoluble B is formed. If B is further reacted with CO₂ then soluble compound is formed 'A' is
 - (A) Quick lime
- (B) Slaked lime
- (C) Lime water
- (D) White lime
- 64. The pair from the following pairs having both compounds with net non-zero dipole moment is:
 - (A) Benzene, anisidine

(B) 1,4-Dichlorobenzene, 1,3-Dichlorobenzene

(C) CH₂Cl₂, CHCl₃

(D) cis-butene, trans-butene

65. Match List-II with List-II

	List-I (Industry)		List-II (Waste Generated)
A.	Steel plants	I.	Gypsum
B.	Thermal power plants	II.	Fly ash
C.	Fertilizer industries	III.	Slag
D.	Paper mils	IV.	Bio-degradable wastes

Choose the **correct** answer from the options given below:

- (A) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (B) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (C) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- (D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- 66. Isomeric amines with molecular formula C₈H₁₁N give the following tests:

Isomer (P) \Rightarrow Can be prepared by Gabriel phthalimide synthesis

Isomer (Q) \Rightarrow Reacts with Hinsberg's reagent to give solid insoluble in NaOH

Isomer (**R**) \Rightarrow Reacts with HONO followed by β -naphthol in NaOH to give red dye.

Isomers (P), (Q) and (R) respectively are –

(A)
$$NH_2$$
 NH_2 NH_2 NH_3

(B)
$$NH_2$$
 CH_3 NH

(C)
$$NH_2$$
 NH_2

67. Given below are two statements;

Statement I : Aqueous solution of $K_2Cr_2O_7$ is preferred as a primary standard in volumetric analysis over $Na_2Cr_2O_7$ aqueous solution.

Statement II : K₂Cr₂O₇ has a higher solubility in water than Na₂Cr₂O₇.

In the light of the above statements, choose the correct answer from the options given below –

- (A) Both Statement I and Statement II are true
- (B) Both Statement I and Statement II are false
- (C) Both Statement I is true but Statement II is false
- (D) Both Statement I is false but Statement II is true
- 68. The one that does not stabilize 2° and 3° structures of proteins is :
 - (A) H-bonding

(B) -S-S-linkage

(C) –O-O-linkage

- (D) van der Waals forces
- 69. Given below are two reactions, involved in the commercial production of dihydrogen (H₂).

The two reactions are carried out at temperature "T₁" and "T₂" respectively.

$$C(s) + H_2O(g) \xrightarrow{T_1} CO(g) + H_2(g)$$

$$CO(g) + H_2O(g) \xrightarrow{T_2} CO_2(g) + H_2(g)$$

The temperature T_1 and T_2 are correctly related as –

(A) $T_1 > T_2$

(B) $T_1 = T_2$

(C) $T_1 = 100 \text{ K}, T_2 = 1270 \text{ K}$

- (D) $T_1 < T_2$
- 70. Which of the following statements are **correct**?
 - (A) The M^{3+}/M^{2+} reduction potential for iron is greater than manganese.
 - (B) The higher oxidation states of first row dblock elements get stabilized by oxide ion.
 - (C) Aqueous solution of Cr²⁺ can liberate hydrogen from dilute acid.
 - (D) Magnetic moment of V^{2+} is observed between 4.4 5.2 BM.

Choose the **correct** answer from the options given below –

(A) (B), (C) only

(C), (D) only

(C) (A), (B), (D) only

- (D) (A), (B) only
- Which of the following is used as a stabilizer during the concentration of sulphide ores?
 - (A) Pine oils
- (B) Xanthates
- (C) Fatty acids
- (D) Cresols
- 72. The octahedral diamagnetic low spin complex among the following is
 - (A) $[NiCl_{\lambda}]^{2-}$
- (B) $[CoCl_2]^{3-}$
- (C) $[CoF_2]^{3-}$
- (D) $[Co(NH_3)_6]^{3+}$

- 73. Given,
 - (A) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$; $\Delta H_1^{\theta} = -x \text{ kJ mol}^{-1}$
 - (B) $C(graphite) + O_2(g) \rightarrow CO_2(g)$; $\Delta H_2^{\theta} = -y \text{ kJ mol}^{-1}$

The ΔH^{θ} for the reaction, C(graphite) + $\frac{1}{2}$ O₂(g) \rightarrow CO(g) is :

- (A) $\frac{x-2y}{2}$ (B) $\frac{x+2y}{2}$ (C) $\frac{2x-y}{2}$

- 74. The compound which does not exist is:
 - (A) NaO₂
- (B) $(NH_4)_2BeF_4$ (C) BeH_2
- (D) PbEt₄

Match List I with List II. 75.

	List-I (Polymer)		List-II (Type/Class)
A.	Nylon-2-Nylon-6	I.	Thermosetting Polymer
B.	Buna-N	II.	Biodegradable polymer
C.	Urea-formaldehyde resin	III.	Synthetic rubber
D.	Dacron	IV.	Polyester

Choose the **correct** answer from the options given below –

- (A) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)
- (B) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
- (C) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
- (D) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- 76. The number of molecules and moles in 2.8375 litres of O₂ at STP are respectively.
 - (A) 7.527×10^{22} and 0.250 mol
- (B) 1.505×10^{23} and 0.250 mol
- (C) 7.527×10^{23} and 0.125 mol
- (D) 7.527×10^{22} and 0.125 mol
- The enthalpy change for the adsorption process and micelle formation respectively are 77.
 - (A) $\Delta H_{ads} < 0$ and $\Delta H_{mic} > 0$

 $\Delta H_{ads} < 0$ and $\Delta H_{mic} < 0$ (B)

(C) $\Delta H_{ads} > 0$ and $\Delta H_{mic} < 0$

- (D) $\Delta H_{ads} > 0$ and $\Delta H_{mic} > 0$
- The major product 'P' formed in the given reaction is: 78.

- 79. Suitable reaction condition for preparation of Methyl phenyl ether is
 - (A) Ph Br, MeO-Na+

(B) PhO-Na+, MeOH

(C) PhO-Na+, MeBr

- (D) Benzene, MeBr
- 80. Identify the **correct** order of reactivity for the following pairs towards the respectively.

A.
$$S_{N2}$$
 $Br > Br$

B.
$$S_{N1}$$
 Br

D. Nucleophilic substitution
$$\frac{Br}{NO_2}$$

Choose the **correct** answer from the options given below –

(A) (A), (B) and (D) only

(B) (A), (B) (C) and (D)

(C) (A), (C) and (D) only

(D) (B), (C) and (D) only

SECTION - B

- 81. The number of correct statement/s involving equilibria in physical processes from the following is Equilibrium is possible only in a closed system at a given temperature. A. В. Both the opposing processes occur at the same rate. C. When equilibrium is attained at a given temperature, the value of all its parameters became equal. D. For dissolution of solids in liquids, the solubility is constant at a given temperature. 82. The number of bent-shaped molecule/s from the following is _____. N_3^- , NO_2^- , I_3^- , O_3 , SO_3 A molecule undergoes two independent first order reactions whose respective half lives are 12 min and 83. 3 min. If both the reactions are occurring then the time taken for the 50% consumption of the reactant is ___ min. (Nearest integer) 84. The number of incorrect statement/s about the black body from the following is _____. Emit or absorb energy in the form of electromagnetic radiation. A. В. Frequency distribution of the emitted radiation depends on temperature. C. At a given temperature, intensity vs frequency curve passes through a maximum value. D. The maximum of the intensity vs frequency curve is at a higher frequency at higher temperature compared to that at lower temperature. 85. In the following reactions, the total number of oxygen atoms in X and Y is _____. $Na_2O + H_2O \rightarrow 2X$ $Cl_2O_7 + H_2O \rightarrow 2Y$ $FeO_4^{2-} \xrightarrow{^{+2.2V}} Fe^{3+} \xrightarrow{^{+0.70V}} Fe^{2+} \xrightarrow{^{-0.45V}} Fe^0 \ ; \ E_{FeO_4^{2-}/Fe^{2+}}^{\theta} \ is \ x \times 10^{-3} \ \text{V}.$ 86. The value of x is _____. 87. If the degree of dissociation of aqueous solution of weak monobasic acid is determined to be 0.3, then the observed freezing point will be _____ % higher than the expected/theoretical freezing point. (Nearest integer)
- 88. In potassium ferrocyanide, there are _____ pairs of electrons in the t_{2g} set of orbitals.
- 89. At constant temperature a gas is at a pressure of 940.3 mm Hg. The pressure at which its volume decreases by 40% is _____ mm Hg.

 (Nearest Integer)
- 90. The sum of lone pairs present on the central atom of the interhalogen IF_5 and IF_7 is _____.

JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | MHT-CET | FOUNDATION

10-April-2023 (Morning Batch): JEE Main Paper

ANSWER KEY

Mathematics

Sing	le Choice Co	rrect							
1.	A	2.	С	3.	В	4.	С	5.	A
6.	D	7.	D	8.	A	9.	A	10.	В
11.	C	12.	A	13.	C	14.	A	15.	В
16.	В	17.	В	18.	C	19.	A	20.	A
Num	nerical Value								
21.	960	22.	4	23.	9525	24.	32	25.	4898
26.	8	27.	16	28.	151	29.	16	30.	6
					Physics				
Sing	le Choice Co	rrect							
31.	A	32.	D	33.	С	34.	С	35.	В
36.	C	37.	C	38.	D	39.	C	40.	В
41.	D	42.	C	43.	C	44.	В	45.	C
46.	C	47.	В	48.	A	49.	A	50.	A
Num	nerical Value								
51.	30, 60	52.	(+ or –) 245	53.	16	54.	6	55.	18
56.	20	57.	15	58.	5	59.	100	60.	20
				(Chemistry				
Sing	le Choice Co	rrect							
61.	D	62.	A	63.	В	64.	С	65.	A
66.	A	67.	C	68.	C	69.	A	70.	A
71.	D	72.	D	73.	A	74.	A	75.	D
76.	D	77.	A	78.	D	79.	C	80.	В
Num	nerical Value								
81.	3	82.	3	83.	2	84.	0	85.	5
86.	1825	87.	30	88.	3	89.	1567	90.	1