10-April-2023 (Morning Batch): JEE Main Paper

MATHEMATICS

Section - A (Single Correct Answer)

1. A

Sol. $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$

$$
\begin{aligned}
& =(2 \hat{i}+4 \hat{j}-2 \hat{k})-(-2 \hat{i}+\hat{j}-3 \hat{k}) \\
& =4 \hat{i}+3 \hat{j}+\hat{k} \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=-2 \hat{i}+\hat{j}+2 \hat{k} \\
& \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-10 \hat{j}+10 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{OP}}=-\hat{\mathrm{i}}-2 \hat{j}+3 \hat{k}
\end{aligned}
$$

Projection
$=\frac{(\overrightarrow{\mathrm{OP}}) \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})}{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}=3$
2. C

Sol.

For line $A B x+3 y=3$ and circle is $x^{2}+y^{2}=9$

$$
\begin{aligned}
& (3-3 y)^{2}+y^{2}=9 \\
& \Rightarrow 10 y^{2}-18 y=0 \\
& \Rightarrow y=0, \frac{9}{5}
\end{aligned}
$$

\therefore Area $=\frac{1}{2} \times 3 \times \frac{9}{5}=\frac{27}{10}$
$\mathrm{m}-\mathrm{n}=17$
3. B

Sol. Let $\mathrm{f}(\mathrm{x})=\frac{\mathrm{Ax}+\mathrm{B}}{\mathrm{Cx}-\mathrm{A}}$
$f(f(x))=\frac{A\left(\frac{A x+B}{C x-A}\right)+B}{C\left(\frac{A x+B}{C x-A}\right)-A}=x$
$\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)=\frac{4}{\mathrm{x}}$.
$f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)=x+\frac{4}{x} \geq 4$ (by A.M. \geq G.M.)
4. C

Sol. ${ }^{30-2 x}$

Volume (V) $=\mathrm{x}(30-2 \mathrm{x})^{2}$
$\frac{\mathrm{dV}}{\mathrm{dx}}=(30-2 \mathrm{x})(30-6 \mathrm{x})=0$
$\mathrm{x}=5 \mathrm{~cm}$
Surface area $=4 \times 5 \times 20+(20) 2=800 \mathrm{~cm}^{2}$
5. A

Sol. Differentiate the given equation
$\Rightarrow 2 \mathrm{xf}(\mathrm{x})+\mathrm{x}^{2} \mathrm{f}^{\prime}(\mathrm{x})-1=4 \mathrm{xf}(\mathrm{y})$
$\Rightarrow x^{2} \frac{d y}{d x}-2 \cdot x y=1$
$\Rightarrow \frac{d y}{d x}+\left(-\frac{2}{x}\right) y=\frac{1}{x^{2}}$
I.F. $=\mathrm{e}^{\int-\frac{2}{x} \ln x}=\frac{1}{\mathrm{x}^{2}}$
$\therefore y\left(\frac{1}{\mathrm{x}^{2}}\right)=\int \frac{1}{\mathrm{x}^{4}} \mathrm{dx}$

$$
\begin{aligned}
& \Rightarrow \frac{y}{x^{2}}=\frac{-1}{3 x^{3}}+c \\
& \Rightarrow y=-\frac{1}{3 x^{3}}+c \\
& \Rightarrow y=-\frac{1}{3 x}+c^{2} \\
& \because f(x)=-\frac{1}{3 x}+x^{2} \\
& f(x)=-\frac{1}{3 x}+x^{2} \\
& 18 f(3)=160
\end{aligned}
$$

6. D

Sol. $\left(\frac{\lambda}{\sqrt{2}} \sin \theta, \frac{-\lambda}{\sqrt{2}} \cos \theta\right) A \overbrace{\mathrm{P}(\mathrm{h}, \mathrm{k})}^{2} \mathrm{~B}\left(\frac{\lambda}{\sqrt{2}} \cos \theta, \frac{\lambda}{\sqrt{2}} \sin \theta\right)$

$$
\begin{aligned}
& \mathrm{h}=\frac{\frac{2 \lambda}{\sqrt{2} \sin \theta}+3 \times \frac{\lambda}{\sqrt{2}} \cos \theta}{5} \\
& \mathrm{k}=\frac{\frac{-2 \lambda}{\sqrt{2}} 2 \cos \theta+\frac{3 \lambda}{\sqrt{2}} \sin \theta}{5} \\
& \mathrm{~h}^{2}+\mathrm{k}^{2}=\frac{19 \lambda^{2}}{5} \\
& \mathrm{r}=\frac{\sqrt{19} \lambda}{5}
\end{aligned}
$$

7. D

Sol. $\frac{2 z-3 i}{2 z+i}$ is purely imaginary

$$
\begin{aligned}
& \therefore \frac{2 \mathrm{z}-3 \mathrm{i}}{2 \mathrm{z}+\mathrm{i}}+\frac{2 \overline{\mathrm{z}}+3 \mathrm{i}}{2 \overline{\mathrm{z}}-\mathrm{i}}=0 \\
& \mathrm{z}=\mathrm{x}+\mathrm{iy} \\
& \Rightarrow 4 \mathrm{x}^{2}+4 \mathrm{y}^{2}-4 \mathrm{y}-3=0
\end{aligned}
$$

Given that $x+y^{2}=0$
$x^{2}+y^{2}-y=3 / 4$
8. A

Sol. $\mathrm{P}=96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$
$2 \mathrm{P} \times \sin \frac{\pi}{33}=96 \times 2 \sin \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$
$2 \mathrm{P} \times \sin \frac{\pi}{33}=6 \times \sin \frac{32 \pi}{33}=6 \sin \frac{\pi}{33}$
$\mathrm{P}=3$
9. A

Sol. $\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=\left.3^{3} \operatorname{adj}\left(54 \mathrm{~A}^{2}\right)\left|=3^{3} \cdot\right| 54 \mathrm{~A}^{2}\right|^{2}$ $=3^{3} \times 54^{6} \times|A|^{4}=3^{11} \times 6^{10}$
10. B

Sol. $\frac{d y}{d x}=\frac{1+\left(\frac{y}{x}\right)^{2}}{2\left(\frac{y}{x}\right)}$
Let $\mathrm{y}=\mathrm{tx}$
$\Rightarrow \mathrm{t}+\mathrm{x} \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1+\mathrm{t}^{2}}{2 \mathrm{t}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1-\mathrm{t}^{2}}{2 \mathrm{t}}$
$\Rightarrow \int \frac{2 \mathrm{t}}{1-\mathrm{t}^{2}} \mathrm{dt}=\int \frac{\mathrm{dx}}{\mathrm{x}}$
$\Rightarrow \ell \mathrm{n}\left|1-\mathrm{t}^{2}\right|=\ell \mathrm{nx}+\ell \mathrm{nx}+\ell \mathrm{nc}$
$\Rightarrow\left(1-\mathrm{t}^{2}\right)(\mathrm{cx})=1$
$\Rightarrow\left(1-\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}\right) \mathrm{cx}=1$
$\mathrm{y}(2)=0 \Rightarrow \mathrm{c}=\frac{1}{2}$
$\left(1-\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}\right) \cdot \frac{1}{2} \mathrm{x}=1$
at $\mathrm{x}=8$
$\left(1-\frac{y^{2}}{64}\right) \times \frac{8}{2}=1$

$$
y= \pm 4 \sqrt{3}
$$

11. C

Sol. $\Delta=\left|\begin{array}{ccc}2 & -1 & 3 \\ 3 & 2 & -1 \\ 4 & 5 & \alpha\end{array}\right|=7(\alpha+5)$
$\Delta_{1}=\left|\begin{array}{ccc}5 & -1 & 3 \\ 7 & 2 & -1 \\ \beta & 5 & \alpha\end{array}\right|=17 \alpha-5 \beta+130$
$\Delta_{2}=\left|\begin{array}{ccc}2 & 5 & 3 \\ 3 & 7 & -1 \\ 4 & \beta & \alpha\end{array}\right|=-11 \beta+\alpha+104$
$\Delta_{3}=\left|\begin{array}{ccc}2 & -1 & 5 \\ 3 & 2 & 7 \\ 4 & 5 & \beta\end{array}\right|=7(\beta-9)$
For infinitely many solutions
$\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
For $\alpha=5$ and $\beta=9$
Hence option (C) is incorrect
12. A

Sol. $\mathrm{N}=$ Sum of the numbers when two dice are rolled such that $2 \mathrm{~N}<\mathrm{N}$!
$\Rightarrow 4 \leq \mathrm{N} \leq 12$
Probability that $2^{\mathrm{N}} \geq \mathrm{N}$!
Now, $\mathrm{P}(\mathrm{N}=2)+\mathrm{P}(\mathrm{N}=3)=\frac{1}{36}+\frac{2}{36}=\frac{3}{36}=\frac{1}{12}$
Required probability $=1-\frac{1}{12}=\frac{11}{12}=\frac{m}{n}$
$4 m-3 n=8$
13. C

Sol. $\mathrm{P}=(3 \lambda-3, \lambda-2, \lambda-2 \lambda)$
P lies on the plane, $x+y+z=2$
$\Rightarrow \lambda=3$
$\mathrm{P}=(6,1,-5)$
$q=\left|\frac{18-4-60-32}{\sqrt{9+16+144}}\right|=\frac{78}{13}=6$
$q=6,2 q=12$
Equation, $x^{2}-18 x+72=0$
14. A

Sol. $\sim[(p \vee q) \wedge(q \vee(\sim p)]$
$\Rightarrow \sim(p \wedge q) \vee \sim(q \vee(\sim p))$
$\Rightarrow(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{q} \wedge \mathrm{p})$
Applying distribution law
$\Rightarrow \sim q \wedge(\sim p \vee p)$
$\Rightarrow(\sim p \vee p) \wedge(\sim q)$
15. B

Sol. $\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{bx}{ }^{2}}\right)^{\mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}} \mathrm{x}^{13-3 \mathrm{r}}$
$13-3 \mathrm{r}=7 \Rightarrow \mathrm{r}=2$
Coefficient of $\mathrm{x}^{2}={ }^{13} \mathrm{C}_{2}(\mathrm{a})^{11} \cdot \frac{1}{\mathrm{~b}^{2}}$
In the other expansion
$\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$13-3 r=-5 \Rightarrow r=6$
Coefficient of $x^{-5}={ }^{13} C_{6}(a)^{7} \cdot \frac{1}{b^{6}}$
${ }^{13} \mathrm{C}_{2} \frac{\mathrm{a}^{11}}{\mathrm{~b}^{2}}={ }^{13} \mathrm{C}_{6} \frac{\mathrm{a}^{7}}{\mathrm{~b}^{6}}$
$a^{4} b^{4}=\frac{{ }^{11} C_{6}}{{ }^{10} C_{2}}=22$
16. B

Sol. Given, $\mathrm{A}(2,4,6), \mathrm{B}(0,-2,-5)$
$\mathrm{G}(2,1,-1)$
Let vertex $C(x, y, z)$
$\frac{2+0+\mathrm{x}}{3}=2 \Rightarrow \mathrm{x}=4$
$\frac{4-2+y}{3}=1 \Rightarrow y=1$
$\frac{6-5+z}{3}=-1 \Rightarrow z=-4$
Third vertex, $\mathrm{C}(4,1,-4)$
Then image of vertex in the plane let image (α, β, $\gamma)$
i.e., $\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{-2(4+2-16-11)}{21}$
$\alpha=6, \beta=5, \gamma=4$
$\alpha \beta+\beta \gamma+\gamma \alpha=30+20+24=74$
17. B

Sol. Given lines
$\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2} \& \frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$
Formula for shortest distance
S.D. $=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}$

$$
=\frac{\left|\begin{array}{ccc}
6 & 1 & -8 \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right|}{\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right|}=\frac{54}{6}=9
$$

18. C

Sol. $I(x)=\int \frac{e^{\sin x} \cdot \sin 2 x}{I I} \cdot \frac{\cos x}{I} d x-\int e^{\sin ^{2} x} \cdot \sin x d x$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}(\mathrm{x})=\mathrm{e}^{\sin ^{2} x}-\int(-\sin x) \cdot \mathrm{e}^{\sin ^{2} x} d x-\int \mathrm{e}^{\sin ^{2} x} \cdot \sin \mathrm{xdx} \\
& \Rightarrow \mathrm{I}(\mathrm{x})=\mathrm{e}^{\sin ^{2} x} \cdot \cos \mathrm{x}+\mathrm{c}
\end{aligned}
$$

Put $\mathrm{x}=0, \mathrm{c}=0$
$\therefore \mathrm{I}\left(\frac{\pi}{3}\right)=\mathrm{e}^{\frac{3}{4}} \cdot \cos \frac{\pi}{3}=\frac{1}{2} \mathrm{e}^{\frac{3}{4}}$
19. A

Sol. $\Rightarrow a^{2}+a^{2} r^{2}+a^{2} r^{4}=33033$
$\Rightarrow \mathrm{a}^{2}\left(\mathrm{r}^{4}+\mathrm{r}^{2}+1\right)=3 \times 7 \times 112 \times 13 \Rightarrow \mathrm{a}=11$
$\Rightarrow \mathrm{r}^{4}+\mathrm{r}^{2}+1=273 \Rightarrow \mathrm{r}^{4}+\mathrm{r}^{2}-272=0$
$\Rightarrow\left(\mathrm{r}^{2}+17\right)\left(\mathrm{r}^{2}-16\right)=0$
$\Rightarrow r^{2}=16 \Rightarrow r= \pm 4$
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}=11+44+176=231$
20. A

Sol.

$|\overrightarrow{\mathrm{u}}|=|\overrightarrow{\mathrm{v}}|=|\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}}|$
$(\overrightarrow{\mathrm{u}}) \cdot(\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}})=0$
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}=|\mathrm{u}||\mathrm{v}| \cos 45^{\circ}$
$\alpha=-\frac{\beta}{\sqrt{2}}$
$=|\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}}|=\mathrm{r}$
$\alpha=-1, \beta^{2}=2$

Section - B (Numerical Value)

21. 960

Sol. General term $=\frac{10!}{r_{1}!r_{2}!\cdot r_{3}!}(-1)^{r_{2}} \cdot(2)^{r_{3}} x^{r_{2}+3 r_{3}}$
where $r_{1}+r_{2}+r_{3}=10$ and $r_{2}+3 r_{3}=7$
$\begin{array}{lll}r_{1} & r_{2} & r_{3} \\ 3 & 7 & 0 \\ 5 & 4 & 1 \\ 7 & 1 & 2\end{array}$

Required coefficient

$$
\begin{aligned}
& =\frac{10!}{3!\cdot 7!}(-1)^{7}+\frac{10!}{5!\cdot 4!}(-1)^{4}(2)+\frac{10!}{7!\cdot 2!}(-1)^{1}(2)^{2} \\
& =-120+2520-1440=960
\end{aligned}
$$

22. 4

Sol. $f(x)=\left\{\begin{array}{cl}x[x] & ,-2<x<0 \\ (x-1)[x] & , 0 \leq x<2\end{array}\right.$

$|f(x)|=$ Remain same
$\mathrm{m}=1, \mathrm{n}=3$
$\mathrm{m}+\mathrm{n}=4$
23. 9525

Sol. Required sum $=(3+8+13+18+$ + 373)
$-(3+18+33+\ldots \ldots+363)$
$=\frac{75}{2}(3+373)-\frac{25}{2}(3-363)$
$=75 \times 188-25 \times 183$
$=9525$
24. 32

Sol. General tangent of slope m to the circle $(x-4)^{2}+$ $y=16$ is given by $y=m(x-4) \pm 4 \sqrt{1+m^{2}}$

General tangent of slope m to the parabola $y=4 x$ is given by $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$

For common tangent $\frac{1}{m}=-4 m \pm 4 \sqrt{1+\mathrm{m}^{2}}$
$m= \pm \frac{1}{2 \sqrt{2}}$
Point of contact on parabola is $(8,4 \sqrt{2})$
Length of tangent PQ from $(8,4 \sqrt{2})$ on the circle $(x-4)^{2}+y^{2}=16$ is equal to $\sqrt{(8-4)^{2}+(4 \sqrt{2})^{2}-16}$ is equal to $\sqrt{32}$
PQ^{2} is equal to 32
25. 4898

Sol. Digits \rightarrow 1, 2, 3, 4, 5, 6,7
Total permutations $=7$!
Let $\mathrm{A}=$ number of numbers containing string 153
Let $\mathrm{B}=$ number of numbers containing string 2467

$n(A)=5!\times 1$	153	2467
$n(B)=4!\times 1$	2467	135
$n(A \cap B)=2!$	153	2467

$n(A \cup B)=5!+4!-2!=142$
n (neither string 153 nor string 2467)
$=$ Total $-\mathrm{n}(\mathrm{A} \cup \mathrm{B})$
$=7!-142=4898$
26. 8

Sol. $(2 \mathrm{a})^{\ln \mathrm{a}}=(\mathrm{bc})^{\ln \mathrm{b}} 2 \mathrm{a}>0, \mathrm{bc}>0$

$$
b^{\ln 2}=a^{\ln c}
$$

$\ln a(\ln 2+\ln a)=\ln b(\ln b+\ln c)$
$\ln 2 \cdot \ln b=\operatorname{lnc} \cdot \ln a$
$\ln 2=\alpha, \ln \mathrm{a}=\mathrm{x}_{1} \ln \mathrm{~b}=\mathrm{y}, \ln \mathrm{c}=\mathrm{z} \quad \alpha \mathrm{y}=\mathrm{yz}$
$x(a+x)=y(y+2)$
$\alpha=\frac{x z}{y}$
$(2 a)^{\ln a}=(2 a)^{0}$
$x\left(\frac{x z}{y}+x\right)=y(y+z)$
$x^{2}(z+y)=y^{2}(y+z)$
$y+z=0$ or $x^{2}=y^{2} \Rightarrow x=-y$
$\mathrm{bc}=1$ or $\mathrm{ab}=1$
(I) if $\mathrm{bc}=1 \Rightarrow(2 \mathrm{a})^{\ln \mathrm{a}}=1 \longrightarrow \mathrm{a}=1$
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\frac{1}{2}, \lambda, \frac{1}{\lambda}\right), \lambda \neq 1,2, \frac{1}{2}$
then $6 a+5 b c=3+5=8$
(II) $(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\lambda, \frac{1}{\lambda}, \frac{1}{2}\right), \lambda \neq 1,2, \frac{1}{2}$

In this situation infinite answer are possible So, Bonus.
27. 16

Sol. There can be infinitely many parabolas through given points.

$A=\int_{-1}^{0}\left(1-x^{2}\right)-\left(x-\sqrt{1-(x+1)^{2}}\right) d x$
$=\int_{-1}^{0}-x^{2}+\sqrt{1-(x+1)^{2}} d x$
$=\left(-\frac{x^{3}}{3}+\frac{x+1}{2}=\sqrt{1-(x+1)^{2}}+\frac{1}{2} \cdot \sin ^{-1}\left(\frac{x+1}{1}\right)\right)_{-1}^{0}$
$\mathrm{A}=\frac{\pi}{4}-\left(\frac{1}{3}\right)$
$\therefore 12(\pi-4 \mathrm{~A})=12\left(\pi-4\left(\frac{\pi}{4}-\frac{1}{3}\right)\right)=16$
This is possible only when axis of parabola is parallel to Y axis but is not given in question, so it is bonus.
28. 151

Sol. Given mean is $=28$
$\frac{2 \times 5+3 \times 15+\mathrm{x} \times 25+5 \times 35+4 \times 45}{14+\mathrm{x}}=28$
$x=6$
Variance $=\left(\frac{\sum \mathrm{x}_{\mathrm{i}}^{2} \mathrm{f}_{\mathrm{i}}}{E f_{\mathrm{i}}}\right)-(\text { mean })^{2}$
Variance $=\frac{2 \times 5^{2}+3 \times 15^{2}+6 \times 25^{2}+5 \times 35^{2}+4 \times 45^{2}}{20}-(28)^{2}$
$=151$
29. 16

Sol. ${ }^{n} C_{2} \times{ }^{n-2} C_{2} \times 2=840$
$\Rightarrow \mathrm{n}=8$
Therefore total persons $=16$
30. 6

Sol. $-6<n^{2}-10 n+19<6$
$\Rightarrow \mathrm{n}^{2}-10 \mathrm{n}+25>0$ and $\mathrm{n}^{2}-10 \mathrm{n}+13<$
$(\mathrm{n}>5)^{2}>0 \mathrm{n} \in[5-2 \sqrt{3}, 5+2 \sqrt{3}]$
$n \in R-[5]$
$\therefore \mathrm{n} \in[1,3,8,3]$
$\Rightarrow \mathrm{n}=2,3,4,6,7,8$

PHYSICS

Section - A (Single Correct Answer)

31. A

Sol.

$$
\begin{aligned}
& \frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100 \%=\left(2 \frac{\Delta \mathrm{a}}{\mathrm{a}}+3 \frac{\Delta \mathrm{~b}}{\mathrm{~b}}+\frac{\Delta \mathrm{c}}{\mathrm{c}}+\frac{1}{2} \frac{\Delta \mathrm{~d}}{\mathrm{~d}}\right) \times 100 \% \\
& =2(1 \%)+3(2 \%)+3 \%+\frac{1}{2} \times 4 \%=13 \%
\end{aligned}
$$

32. D

Sol. $\mathrm{M}=\frac{\mathrm{W}}{\mathrm{g}}=\frac{200}{10}=20 \mathrm{~kg}$

Acc. due to gravity at a depth $\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
$d \rightarrow$ depth from surface
$d=\frac{R}{2}$
$\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{R} / 2}{\mathrm{R}}\right)=\frac{\mathrm{g}}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$
weight $=m \times g$
at depth $\mathrm{R} / 2=20 \times 5=100 \mathrm{~N}$
33. C

Sol.

$\mathrm{V}_{\mathrm{b}}=8$ volt
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=8$ volt
Current through zener diode,
$\mathrm{i}=\frac{\mathrm{P}}{\mathrm{V}}=\frac{1.6 \mathrm{~W}}{8 \mathrm{~V}}=0.2 \mathrm{~A}$
$\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{A}}=10-8$ volt
[Note : A zener diode can regulate only if input voltage is \geq zener breakdown voltage the range of input voltage should be 8 to 10 V so that output voltage remains constant $=8 \mathrm{~V}$]
34. C

Sol. $R=\frac{v^{2} \sin 2 \theta}{g}$
$\mathrm{R} \propto \sin (2 \theta)$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\sin \left(2 \theta_{1}\right)}{\sin \left(2 \theta_{2}\right)}=\frac{\sin (2 \times 15)}{\sin (2 \times 45)}=\frac{\sin 30^{\circ}}{\sin 90^{\circ}}$
$\frac{50}{\mathrm{R}_{2}}=\frac{1}{2}$
$\mathrm{R}_{2}=100 \mathrm{~m}$
35. B

Sol. Given, $\mathrm{A}_{\mathrm{c}}=15 \mathrm{~V}$
$\mathrm{A}_{\mathrm{m}}=3 \mathrm{~V}$
Maximum amplitude of modulated wave
$\mathrm{A}_{\text {max }}=\mathrm{A}_{\mathrm{c}}+\mathrm{A}_{\mathrm{m}}=15+3=18 \mathrm{~V}$
Minimum amplitude of modulated wave
$\mathrm{A}_{\text {min }}=\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{m}}=15-3=12 \mathrm{~V}$
$\therefore \frac{\mathrm{A}_{\mathrm{c}}+\mathrm{A}_{\mathrm{m}}}{\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{m}}}=\frac{18}{12}=\frac{3}{2}$
36. C

Sol. L $=m v r, r \propto n^{2}, v \propto \frac{1}{n}$
$\therefore \mathrm{L} \propto \mathrm{n}$
Also, $\mathrm{L}=\frac{\mathrm{nh}}{2 \pi}$, Bohr orbit is, $\mathrm{L}_{1}=\mathrm{L}=\frac{1 . \mathrm{h}}{2 \pi}$
$\mathrm{L}_{2}=2[\mathrm{~L}]=2 \mathrm{~L}$
$L_{2}=\frac{2 h}{2 \pi}$
So, change $=L_{2}-L_{1}=2 L-L=L$
37. C

Sol.

Applying conservation of linear momentum
$\Rightarrow \overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}}$
$\mathrm{mv}+2 \mathrm{~m} \times 0=(3 \mathrm{~m}) \mathrm{v}^{\prime}$
$\therefore \quad \mathrm{mv}=3 \mathrm{mv}^{\prime}$
$\mathrm{v}^{\prime}=\frac{\mathrm{v}}{3}$
38. D

Sol. For a moving coil galvanometer
BiNA $=k \theta$
$\theta=\left(\frac{\text { BNA }}{\mathrm{k}}\right) \mathrm{i}$; Current sensitive $=\frac{\mathrm{BNA}}{\mathrm{k}}$
So, if N is doubled then current sensitivity is doubled.
Voltage sensitivity
$B \frac{V}{R} N A=k \theta$
$\mathrm{V}=\frac{\mathrm{BNA}}{\mathrm{Rk}} \theta$, as N is doubled R is also doubled.
So, no change in voltage sensitivity.
Hence, option (D) is right.
39. C

Sol. Factual

Type of gases	No. of degrees of freedom
Monoatomic gas	3 T
Diatomic + rigid	$3 \mathrm{~T}+2 \mathrm{R}$
Diatomic + non-rigid	$3 \mathrm{~T}+2 \mathrm{R}+1 \mathrm{~V}$
Polyatomic	$3 \mathrm{~T}+3 \mathrm{R}+$ More than 1V

$\mathrm{T}=$ Translational degree of freedom
$\mathrm{R}=$ Rotational degree of freedom
$\mathrm{V}=$ Vibrational degree of freedom
40. B

Sol. The circuit can be reduced to

$\Rightarrow R_{\text {eq }}=\frac{16 \times 4}{16+4}=\frac{16}{5} \Omega$
$=R_{\text {eq }}=3.2 \Omega$
41. D

Sol. Isothermal process, $\mathrm{T}=$ constant
$\mathrm{PV}=\mathrm{nRT}=$ constant
$P_{1} V_{1}=P_{2} V_{2}$
$\mathrm{PV}=\mathrm{P}_{\mathrm{A}}(\mathrm{V} / 8)$
$\mathrm{P}_{\mathrm{A}}=8 \mathrm{P}$
Adiabatic process, $\mathrm{PV}^{\gamma}=$ constant
γ for monoatomic gas is $5 / 3$.
$\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \gamma_{2}^{\gamma}$
$\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{\mathrm{V}}{\mathrm{V} / 8}\right)^{\frac{5}{3}}$
$\mathrm{P}_{\mathrm{B}}=32 \mathrm{P}$
$\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{A}}}=\frac{32 \mathrm{P}}{8 \mathrm{P}}=4$
42. C

Sol. Power will be maximum when impedance is minimum
$Z=\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]^{\frac{1}{2}}$
At resonance, $X_{L}=X_{C}$
$Z_{\text {min }}=R$
43. C

Sol. $v=\sqrt{\frac{G M}{r}}$
$v \propto \frac{1}{\sqrt{\mathrm{r}}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}}=\sqrt{\frac{3 \mathrm{r}}{\mathrm{r}}}$
$=\sqrt{3}: 1$
44. B

Sol. Pressure in a static liquid will be same at each point on same horizontal level.
$\therefore \quad \mathrm{P}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}$
As per Pascal law, same pressure applied to enclosed water is transmitted in all directions equally.
45. C

Sol. The circuit can be reduced to

Parallel combination

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}+\mathrm{C}=2 \mathrm{C}
$$

46. C

Sol. $\mathrm{E}=\mathrm{E}_{0} \sin (\omega \mathrm{t}-\mathrm{kx})$
Energy density $\left(\frac{d u}{d v}\right)=\varepsilon_{0} E_{0}^{2} \sin ^{2}(\omega t-k x)$

$$
\frac{\varepsilon_{0} \mathrm{E}_{0}^{2}}{2}[1-\cos (2 \omega \mathrm{t}-2 \mathrm{kx})]
$$

47. B

Sol.

$\therefore \quad$ Shifting of image will be 8 cm towards mirror.
48. A

Sol. From K.T.G.
$v_{\text {RMS }}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{m}}}$
$v_{\mathrm{RMS}} \propto \sqrt{\mathrm{T}}$
and $\frac{\mathrm{h}}{\mathrm{m} v_{\mathrm{RMS}}}=\lambda$ i.e., $\lambda \propto \frac{1}{\sqrt{\mathrm{~T}}}$
$\frac{\lambda_{2}}{\lambda_{1}}=\sqrt{\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}=\sqrt{\frac{300}{600}}=\frac{1}{\sqrt{2}}$
$\lambda_{2}=\frac{\lambda_{1}}{\sqrt{2}}$
49. A

Sol. $\mathrm{X}=\mathrm{A} \sin (\omega \mathrm{t}+\delta) \quad \mathrm{V}=\mathrm{A} \omega \cos (\omega \mathrm{t}+\delta)$
$\frac{\mathrm{A}}{2}=\mathrm{A} \sin (\omega \mathrm{t}+\delta) \quad \therefore \mathrm{V}$ is $+\mathrm{ve}, \delta$ must be
At $t=0 \quad$ in $1^{\text {st }}$ quadrant or $4^{\text {th }}$
$\sin \delta=\frac{1}{2} \Rightarrow \delta=\frac{\pi}{6}, \frac{5 \pi}{6} \quad$ quadrant
$\therefore \quad$ Common solution is $\delta=\frac{\pi}{6}$
50. A

Sol. As slope of B > Slope of A
$\therefore \mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{A}}$
Also, $\mathrm{t}_{\mathrm{B}}<\mathrm{t}_{\mathrm{A}}$

Section - B (Numerical Value)

51. 30,60

Sol. $\mathrm{I}_{0}=32 \mathrm{w} / \mathrm{m}^{2}$

$$
I_{\text {net }}=3=\frac{32}{2} \cos ^{2} \theta \cdot \sin ^{2} \theta
$$

$\frac{3}{4}=4 \sin ^{2} \theta \cdot \cos ^{2} \theta=(\sin 2 \theta)^{2}$
$\frac{\sqrt{3}}{2}=\sin (2 \theta)$
Hence, $\theta=30^{\circ}$ and 60°
52. +245 or -245

Sol. $\mathrm{r}_{\text {avg }}=15 \mathrm{~cm}$
$\mathrm{w}_{\mathrm{f}}+\mathrm{w}_{\mathrm{g}}=\Delta \mathrm{KE}$
$\mathrm{w}_{\mathrm{f}}+10 \times 0.3=-\frac{1}{2} \times 484$
$\mathrm{w}_{\mathrm{f}}=-245 \mathrm{~J}$
53. 16

Sol. From conservation of angular momentum

$\frac{2}{5} \mathrm{MR}^{2} \omega_{1}=\frac{2}{5} \mathrm{M}\left(\frac{\mathrm{R}}{4}\right)^{2} \omega_{2}$
$\Rightarrow \mathrm{MR}^{2} \omega_{1}=\frac{\mathrm{MR}^{2}}{16} \omega_{2}$
$\Rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{1}{16} \Rightarrow \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{1}{16} \Rightarrow \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{16}{1}=\frac{\mathrm{t}_{1}}{\mathrm{x}}$
$\therefore \mathrm{t}_{1}=24 \Rightarrow \frac{16}{1}=\frac{24}{\mathrm{t}_{2}} \Rightarrow \mathrm{x}=16$
54. 6

Sol. $I=H$
Given, $\mathrm{I}=2.4 \times 10^{3} \mathrm{~A} / \mathrm{m}$
$2.4 \times 10^{3}=\mathrm{H}=\mathrm{ni}$
$\mathrm{n}=\frac{\mathrm{N}}{l}$
$2.4 \times 10^{3}=\frac{60}{15 \times 10^{-2}} \mathrm{i}$

$$
\mathrm{i}=\frac{2.4 \times 15 \times 10}{60}=\frac{36}{6}=6 \mathrm{~A}
$$

55. 18

Sol. F $=\mathrm{i} l \mathrm{~B}$

$$
\begin{aligned}
& =\left(\frac{\varepsilon}{\mathrm{R}}\right) l \mathrm{~B}=\left(\frac{\mathrm{vB} l}{\mathrm{R}}\right) l \mathrm{~B}=\frac{\mathrm{vB}^{2} l^{2}}{\mathrm{R}}=\frac{4}{5} \times\left(\frac{15}{100}\right)^{2} \times 1^{2} \\
& =\frac{4}{5} \times \frac{225}{10^{4}} \\
& =\frac{180}{10^{4}}=0.018 \mathrm{~N} \\
& =18 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

56. 20

Sol. $y(x, t)=5 \sin (6 t+0.003 x)$
$\mathrm{k}=0.003 \mathrm{~cm}^{-1}$,
$\omega=6 \mathrm{rad} / \mathrm{s}, \mathrm{v}=\frac{\omega}{\mathrm{k}}$
$\Rightarrow \frac{6}{0.003 \times 10^{2}}=20 \mathrm{~ms}^{-1}$
$=20 \mathrm{~ms}^{-1}$
57. 15

Sol. $\lambda=1.5 \times 10^{-5} \mathrm{~s}^{-1}$
No. of mole $=\frac{1 \times 10^{-6}}{60}=\frac{10^{-7}}{6}$
No. of atoms $=$ no. of moles $\times \mathrm{N}_{\mathrm{A}}$
$=\frac{10^{-7}}{6} \times 6 \times 10^{23}=10^{16}$
$\mathrm{A}=\mathrm{N}_{0} \lambda \mathrm{e}^{-\lambda \mathrm{t}}$
For, $\mathrm{t}=0, \mathrm{~A}=\mathrm{A}_{0}=\mathrm{N}_{0} \lambda$
$=1.5 \times 10^{-5} \times 10^{16}=15 \times 10^{10} \mathrm{~Bq}$.
58. 5

Sol.

$\mathrm{q}_{\mathrm{x}}=\sigma 4 \pi \mathrm{a}^{2}$
$q_{y}=-\sigma 4 \pi b^{2}$
$\mathrm{q}_{\mathrm{z}}=\sigma 4 \pi \mathrm{c}^{2}$
Potential $\mathrm{x}=$ potential z
$V_{x}=V_{z}$
$\frac{\mathrm{q}_{\mathrm{x}}}{4 \pi \varepsilon_{0} \mathrm{a}}+\frac{\mathrm{q}_{\mathrm{y}}}{4 \pi \varepsilon_{0} \mathrm{~b}}+\frac{\mathrm{q}_{\mathrm{z}}}{4 \pi \varepsilon_{0} \mathrm{c}}=\frac{\mathrm{q}_{\mathrm{x}}}{4 \pi \varepsilon_{0} \mathrm{c}}+\frac{\mathrm{q}_{\mathrm{y}}}{4 \pi \varepsilon_{0} \mathrm{c}}+\frac{\mathrm{q}_{\mathrm{z}}}{4 \pi \varepsilon_{0} \mathrm{c}}$
$\frac{\sigma 4 \pi \mathrm{a}^{2}}{\mathrm{a}}-\frac{\sigma 4 \pi \mathrm{~b}^{2}}{\mathrm{~b}}+\frac{\sigma 4 \pi \mathrm{c}^{2}}{\mathrm{c}}=\frac{4 \pi \sigma\left[\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}\right]}{\mathrm{c}}$
$c(a-b+c)=a^{2}-b^{2}+c^{2}$
$c(a-b)=a^{2}-b^{2}$
$\mathrm{c}=\mathrm{a}+\mathrm{b}$
$\mathrm{c}=5 \mathrm{~cm}$
59. 100

Sol. Maximum resistance occurs
When all the resisters are connected in series combination
$\therefore \quad \mathrm{R}_{\text {max }}=10 \mathrm{R}$
Here R = 10 ohm
Minimum resistance occurs
When all the resistance are connected in parallel combination
$\mathrm{R}_{\text {min }}=\frac{\mathrm{R}}{10}$
$\therefore \frac{\mathrm{R}_{\text {max }}}{\mathrm{R}_{\text {min }}}=100$
60. 20

Sol. Tension in steel wire

$$
\mathrm{T}^{2}=2 \mathrm{~g}+\mathrm{T}_{1}
$$ $\mathrm{T}_{2}=20+11.4=31.4 \mathrm{~N}$

Elongation in steel wire $\Delta \mathrm{L}=\frac{\mathrm{T}_{2} \mathrm{~L}}{\mathrm{Ay}}$
$\Delta \mathrm{L}=\frac{31.4 \times 1.6}{\pi\left(0.2 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}$
$\Delta \mathrm{L}=\frac{16}{2 \times 4 \times 10^{-6} \times 10^{11}}$
$=2 \times 10^{-5} \mathrm{~m}=20 \times 10^{-6} \mathrm{~m}$

CHEMISTRY

Section - A (Single Correct Answer)

61. D

Sol. If any component eluted second then it means that its R_{f} value is low and its adsorption is stronger.
$\mathrm{R}_{\mathrm{f}}=\frac{\text { distance covered by substance from base line }}{\text { total distance covered by solvent from base line }}$
62. A

Sol. Prolonged heating will cause oxidation of Fe^{+2} to Fe^{+3}.
63. B

Sol. $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ A (less soluble)

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{~B} \text { (insoluble) }
\end{gathered}
$$

$$
\underset{\text { B }}{\mathrm{CaCO}_{3}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \underset{\text { Soluble }}{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}
$$

64. C

Sol. A Benzene \rightarrow non polar
Anisidine \rightarrow polar

B

C $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mu_{\text {net }} \neq 0$ polar

$$
\mathrm{CHCl}_{3}, \mu_{\mathrm{me} 1} \neq 0 \text { polar }
$$

D

$$
\begin{aligned}
& =/ \Rightarrow \text { polar } \\
& \Longrightarrow \Rightarrow \text { non polar }
\end{aligned}
$$

65. A

Sol. Steel plant produces slag from blast furnace. Thermal power plant produces fly ash, Fertilizer industries produces gypsum. Paper mills produces bio degradable waste.
66. A

Sol. (P) Gabriel phthalimide synthesis is used for the preparation of aliphatic primary amines. Aromatic primary amines cannot be prepared by this method.
(Q) 2°-amines reacts with Hinsberg's reagent to give solid insoluble in NaOH .
(R) Aromatic primary amine react with nitrous acid at low temperature ($273-298 \mathrm{~K}$) to form diazonium salts, which form Red dye with β Naphthol
67. C

Sol. A $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is used as primary standard. The concentration $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ changes in aq. solution.
B It is less soluble than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
68. C

Sol. 2° and 3° structure of proteins are stabilized by hydrogen bonding, disulphide linkages, Van der Waals force of attraction and electrostatic force of attraction.
69. A

Sol. $T_{1}=1270 \mathrm{~K}$

$$
\mathrm{T}_{2}=673 \mathrm{~K}
$$

$\mathrm{T}_{1}>\mathrm{T}_{2}$ on the basis of data
70. A

Sol. (A) The $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ reduction potential for manganese is greater than iron
(B) $\mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{0}=+0.77$
$\mathrm{E}_{\mathrm{Mn}^{+3} / \mathrm{Mn}^{+2}}^{0}=+1.57$
(C) $\mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{+2}}^{\mathrm{o}}=-0.26$
$\therefore \quad \mathrm{Cr}^{2 \oplus}+\mathrm{H}^{\oplus} \longrightarrow \mathrm{Cr}^{3 \oplus}+\frac{1}{2} \mathrm{H}_{2}$
(D) $\mathrm{V}^{2 \oplus}=3$ unpaired electron

Magnetic Moment $=3.87$ B.M
71. D

Sol. Cresol is used as stabilizer.
72. D

Sol. (A) Paramagnetic, High Spin \& Tetrahedral
(B) Paramagnetic, High Spin \& Octahedral
(C) Paramagnetic, High Spin \& Octahedral
(D) Diamagnetic, Low Spin \& Octahedral
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, \mathrm{CN}=6$ (Octahedral)
$\mathrm{NH}_{3}=\mathrm{SFL}$
$\mathrm{Co}^{+3}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$

Diamagnetic \& Low spin complex.
73. A

Sol. Target equation,
C (graphite) $+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}$
... (i) $\Delta \mathrm{H}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
(ii)
$\Delta \mathrm{H}_{1}=-\mathrm{y} \mathrm{kJ} / \mathrm{mole}$
$\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}_{2}=\frac{\mathrm{x}}{2} \mathrm{~kJ} / \mathrm{mole}$
eq. (i) $=$ eq.(ii) + eq (iii)
$\therefore \quad \Delta H=\frac{x}{2}-y=\frac{x-2 y}{2}$
74. A

Sol. Sodium superoxide is not stable.
75. D

Sol.
(A) Nylon-2-nylon-6

Biodegradable polymer and polyamides (II)
(B) Buna- $\mathrm{N} \rightarrow$ Butadiene acrylonitrile rubber \rightarrow synthetic rubber (III)
(C) Urea-formaldehyde resin \rightarrow Thermosetting polymer (I)
(D) Dacron \rightarrow Polyester polymer of ethylene glycol and terephthalic acid (IV)
76. D

Sol. Number of moles of $\mathrm{O}_{2}=\frac{2.8375}{22.7}=0.125$
\Rightarrow Number of molecules $=0.125 \mathrm{~N}_{\mathrm{A}}$
$=7.525 \times 10^{22}$
77. A

Sol. Adsorption is exothermic process due to decrease in surface energy.
Micelle formation is endothermic.
78. D

Sol. KMnO_{4} oxidises benzylic carbon containing atleast one α-hydrogen atom to -COOH .

79. C

80. B

Sol. All are correct
(A) $\mathrm{S}_{\mathrm{N}} 2$ reaction decreases with increase in steric crowding.
(B) $\mathrm{S}_{\mathrm{N}} 1$ reaction increases with stability of carbocation.
(C) EAS reaction decreases with decrease in electron density.
(D) Presence of electron withdrawing group at ortho and para-position to a halogen in haloarene increase nucleophilic aryl substitution.

Section - B (Numerical Value)

81. 3

Sol. (A) is correct
(B) for equilibrium $r_{f}=r_{b}$
$\Rightarrow(B)$ is correct
(C) at equilibrium the value of parameters become constant of a given temperature and not equal
$\Rightarrow(\mathrm{C})$ is incorrect
(D) for a given solid solute and a liquid solvent solubility depends upon temperature only
$\Rightarrow(\mathrm{D})$ is correct
82. 3

Sol. N_{3}^{-}linear
NO_{2}^{-}bent
I_{3}^{-}linear
O_{3} bent
SO_{2} bent
83. 2

Sol. $\frac{1}{\mathrm{t}_{1 / 2}}=\frac{1}{3}+\frac{1}{12}=\frac{4+1}{12}=\frac{5}{12}$
$\mathrm{t}_{1 / 2}=\frac{12}{5} \min .=2.4$
Ans. is 2.
84. 0

Sol. A blackbody can emit and absorb all the wavelengths in electromagnetic spectrum $\Rightarrow(\mathrm{A})$ is correct.

$\Rightarrow(\mathrm{B}),(\mathrm{C}),(\mathrm{D})$ correct

Ans (0)
85. 5

Sol. $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}$
$1+4=5$
86. 1825

Sol.

$4 \times \mathrm{E}=3 \times 2.2+1 \times 0.7$
$\mathrm{E}=\frac{7.3}{4}=1.825 \mathrm{~V}=1825 \times 10^{-3} \mathrm{~V}$
87. 30

Sol. $\mathrm{i}=1+\alpha$ (for HA)

$$
\begin{aligned}
& =1.3 \\
& \% \text { increase }=\frac{\left(\Delta T_{f}\right)_{\text {obs }}-\left(\Delta T_{f}\right)_{\text {cal }}}{\left(\Delta T_{f}\right)_{\text {cal }}}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\mathrm{K}_{\mathrm{f}} \times \mathrm{i} \times \mathrm{m}-\mathrm{K}_{\mathrm{f}} \times \mathrm{m}}{\mathrm{~K}_{\mathrm{f}} \times \mathrm{m}} \times 100 \\
\quad=\frac{\mathrm{i}-1}{1} \times 100=30 \%
\end{gathered}
$$

88. 3

Sol. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

$\mathrm{Fe}^{+2}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{CN}^{-}=\mathrm{SFL}$
$t_{2 g}$ contain 6 electron so it become 3 pairs.

Sol. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$940.3 \times 100=P_{2} \times 60$
$\mathrm{P}_{2}=1567 \mathrm{~mm}$ of Hg
90. (1)

Sol. $\mathrm{IF}_{5}=1$ lone pair
$\mathrm{IF}_{7}=0$ lone pair
$1+0=1$
$\square \square \square$

