08-April-2023 (Evening Batch) : JEE Main Paper

MATHEMATICS

Section - A (Single Correct Answer)

1. C
2. C
3. D
4. C
5. A
6. D
7. C
8. A
9. D
10. B
11. B
12. D
13. A
14. C
15. B
16. A
17. B
18. D
19. B
20. D

Section - B (Numerical Value)

21. 6
22. 309
23. 150
24. 20
25. 9
26. 16
27. 12
28. 11
29. 180
30. 17

PHYSICS

Section - A (Single Correct Answer)
31. C

Sol. $V_{P}=\frac{K Q}{r}$

$$
\begin{aligned}
& 50=\frac{9 \times 10^{9} \times 5 \times 10^{-9}}{\mathrm{r}} \\
& \mathrm{r}=\frac{45}{50}=\frac{9}{10}=0.9 \mathrm{~m}=90 \mathrm{~cm}
\end{aligned}
$$

32. A

Sol.

$$
\begin{aligned}
& x(t)=r \cos \left(\omega t+30^{\circ}\right) \\
& x(t)=r \cos (\omega t+\pi / 6)
\end{aligned}
$$

33. C

Sol. A. Torque $\Rightarrow \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}$

$$
[\tau]=[\mathrm{L}]\left[\mathrm{MLT}^{-2}\right]
$$

$$
\Rightarrow \mathrm{ML}^{2} \mathrm{~T}^{-2}
$$

B. \quad Stress $=\frac{F}{\mathrm{~A}} \Rightarrow \frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}$
[stress $]=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
C. Pressure gradient $=\frac{\Delta P}{\Delta X}$
$\Rightarrow \frac{[\mathrm{F} / \mathrm{A}]}{[\mathrm{L}]} \Rightarrow \frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{3}}$
$\Rightarrow \mathrm{ML}^{-2} \mathrm{~T}^{-2}$
D. Coefficient of viscosity $\Rightarrow \mathrm{F}=6 \pi \eta \mathrm{rv}$ $\mathrm{MLT}^{-2}=[\eta] \mathrm{L}^{2} \mathrm{~T}^{-1}$
$[\eta]=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
34. D

Sol.

Considering the transistor in saturation mode $\mathrm{V}_{\mathrm{CE}}=0$
Using KVL
$-I_{c} R_{c}+V_{C C}=0$
$\mathrm{I}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}}=\frac{1}{1 \times 10^{3}}$
$\mathrm{I}_{\mathrm{c}}=10^{-3} \mathrm{~A}$
$\beta=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}$
$\mathrm{I}_{\mathrm{b}}=\frac{10^{-3}}{100} \Rightarrow 10^{-5} \mathrm{~A} \Rightarrow \mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A}$
35. A

Sol. $\mathrm{y}=\mathrm{x}-\frac{\mathrm{x}^{2}}{20}$
For maximum height,
$\frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow 1-\frac{2 \mathrm{x}}{20}=0$
$\mathrm{x}=10$
So, $\mathrm{y}_{\text {max }}=10-\frac{100}{20}=5 \mathrm{~m}$
36. D

Sol. $\mathrm{N}=\mathrm{N}_{\mathrm{o}}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$\frac{\mathrm{N}_{0}}{8}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$\mathrm{n}=3$
3 half lives $=3$ days
1 half life = 1 day
5 days $=5$ half life
$\mathrm{N}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$8 \times 10^{-3}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{5}$
$\mathrm{N}_{0}=256 \times 10^{-3} \mathrm{~kg}$
$\mathrm{N}_{0}=256 \mathrm{~g}$
37. A

Sol.

$V_{A}=V_{D}$
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{B}}$

All resistors are in parallel. So,
$\frac{1}{\mathrm{R}_{\text {eq }}}=\frac{1}{10}+\frac{1}{20}+\frac{1}{20}$
$\mathrm{R}_{\mathrm{eq}}=5 \mathrm{k} \Omega$.
38. C

Sol. Force $=\mathrm{mg}=5000 \mathrm{~g}$
Area of cross section $=250 \mathrm{~cm}^{2}=250 \times 10^{-4} \mathrm{~m}^{2}$
maximum pressure $=\frac{\text { Force }}{\text { area of cross section }}$
$=\frac{5000 \mathrm{~g}}{250 \times 10^{-4}}=\frac{20 \times \mathrm{g}}{10^{-4}}=2 \times 10^{6} \mathrm{~Pa}$
39. D

Sol.

$\mathrm{L}=\mathrm{mvr}$
$\mathrm{v}=\sqrt{\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{r}}}$
$\mathrm{L}=\mathrm{m} \sqrt{\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{r}}} \cdot \mathrm{r}$
$\mathrm{L} \propto \mathrm{r}^{\frac{1}{2}}$
Now distance from centre is increased by 8 times.
So new distance from centre $=r+8 r=9 r$
Now angular momentum $L^{\prime} \propto(9 r)^{1 / 2}$
$\frac{\mathrm{L}}{\mathrm{L}^{\prime}}=\frac{\mathrm{r}^{1 / 2}}{(9 \mathrm{r})^{1 / 2}}=\frac{1}{3}$
$L^{\prime}=3 \mathrm{~L}$
40. C

Sol. Kinetic energy $=\frac{f}{2} \mathrm{kT}, \mathrm{T}$ is absolute temperature.
If K_{1} is kinetic energy at $27^{\circ} \mathrm{C}$.
K_{2} is kinetic energy at new temperature T .
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \Rightarrow \frac{1}{2}=\frac{300}{\mathrm{~T}}$
$\mathrm{T}=600 \mathrm{~K}$
$\mathrm{T}=327^{\circ} \mathrm{C}$
41. A

Sol. For point outside the surface of earth

$$
\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}
$$

$r=$ distance from center of earth
$\Rightarrow \mathrm{g}(\mathrm{h})=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}} \Rightarrow \mathrm{~g}(\mathrm{~h})=\frac{\mathrm{GM}}{\mathrm{R}^{2}\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}}$
$\Rightarrow \mathrm{g}(\mathrm{h})=\frac{\mathrm{GM}}{\mathrm{R}^{2}}\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{-2}$
If $h \lll R,\left(1+\frac{h}{R}\right)^{-2} \approx 1-\frac{2 h}{R}$
$\Rightarrow \mathrm{g}(\mathrm{h})=\frac{\mathrm{GM}}{\mathrm{R}^{2}}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right)$
$\Rightarrow \mathrm{g}(\mathrm{h})=\mathrm{g}_{\text {surface }}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right), \frac{\mathrm{GM}}{\mathrm{R}^{2}}=\mathrm{g}_{\text {surface }}$
42. C

Sol.

Efficiency of carnot engine
$\eta=1-\frac{T_{2}}{T_{1}}=\frac{W}{Q_{1}}$
$\Rightarrow \frac{\mathrm{W}}{\mathrm{Q}_{1}}=1-\frac{300}{400}=\frac{1}{4}$
$\Rightarrow \frac{2 \mathrm{~kJ}}{\mathrm{Q}_{1}}=\frac{1}{4}$
$\Rightarrow \quad \mathrm{Q}_{1}=8 \mathrm{~kJ}$
43. A or C

Sol. Area under velocity time graph gives displacement of body in given time.
Area under acceleration time graph gives change in velocity in the given time.
So Statement I false
Statement II True
44. B

Sol. X rays are emitted when target metal is bombarded with high energy electron.
45. C

Sol. Fringe width $(\beta)=\frac{D \lambda}{d}$

$$
\begin{aligned}
& \Rightarrow \frac{\beta_{2}}{\beta_{1}}=\frac{\lambda_{2}}{\lambda_{1}} \\
& \Rightarrow \frac{\beta_{2}}{2 \mathrm{~mm}}=\frac{600 \mathrm{~nm}}{400 \mathrm{~nm}}=\frac{3}{2}
\end{aligned}
$$

46. B

Sol. Electromagnets are made of soft iron because it has high permeability and low retentivity.
So, Both A and R are correct and R is the correct explanation of A .
47. A

Sol. Intensity of light \propto number of photons \propto no of photo electrons \propto photo current
So, A is correct
$\mathrm{KE}_{\text {max }}=\mathrm{h} \nu-\phi$
$\mathrm{KE}_{\text {max }}$ depends on frequency
So, C is correct
So, A and C are correct
48. A

Sol.

Induced emf $=\mathrm{B} l v$
$\Rightarrow 0.08=0.4\left(\frac{10}{100}\right) \mathrm{v}$
$\Rightarrow \mathrm{v}=\left(\frac{0.08 \times 10}{0.4}\right) \Rightarrow \mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
49. D

Sol. 0.1 kg

$\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}($ Collision $)$
$\Rightarrow \quad(0.1)(400)=(0.1+3.9) \mathrm{v}$
$\Rightarrow \mathrm{v}=\frac{0.1 \times 400}{4}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=\frac{\mu \mathrm{mg}}{\mathrm{m}}=\mu \mathrm{g}$
Apply equation of motion,
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\Rightarrow \quad 0=(10)^{2}-2 \mu \mathrm{~g} \times 20$
$\Rightarrow \quad 40 \mu \mathrm{~g}=100$
$\Rightarrow \quad \mu=\frac{100}{2 \times 10 \times 20}=\frac{1}{4}$
50. D

Sol. Power radiated form a linear antenna of length
$l \propto\left(\frac{l}{\lambda}\right)^{2}$

Section - B (Numerical Value)

51. 4

Sol. Quality factor $=\frac{X_{L}}{R}=\frac{\omega L}{R}$
$\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{1 \times 6.25 \times 10^{-6}}}=\frac{10^{3}}{2.5}=400 / \mathrm{sec}$

Q-factor $=\frac{400 \times 1}{100}=4$
52. 60

Sol. $\mathrm{f}=\frac{\mathrm{nv}}{2 l}$, for fundamental mode $\mathrm{n}=1$
$\mathrm{f}=\frac{\mathrm{v}}{2 l}$
$\mathrm{f} \propto \frac{1}{l}$
$\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}} \propto \frac{l_{2}}{l_{1}}$
$\frac{120}{180}=\frac{l_{2}}{90}$
$l_{2}=60 \mathrm{~cm}$
53. 27

Sol. $\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$ for H-atom
For balmer series, $\mathrm{n}_{1}=2$
$\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{4}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
For $\mathrm{H}_{\alpha}, \mathrm{n}_{2}=3$
\& $\mathrm{H}_{\beta}, \mathrm{n}_{2}=4$
$\frac{1}{\lambda_{\mathrm{H}_{\alpha}}}=\mathrm{R}\left[\frac{1}{4}-\frac{1}{9}\right]=\frac{5 \mathrm{R}}{36}$
$\frac{1}{\lambda_{\mathrm{H}_{\beta}}}=\mathrm{R}\left[\frac{1}{4}-\frac{1}{16}\right]=\frac{3 \mathrm{R}}{16}$
$\frac{\frac{1}{\lambda_{\mathrm{H}_{\alpha}}}}{\frac{1}{\lambda_{\mathrm{H}_{\beta}}}}=\frac{\frac{5 \mathrm{R}}{36}}{\frac{3 \mathrm{R}}{16}}$
$\mathrm{x}=27$
54. 125

Sol. $\mathrm{n}=8 \times 10^{28} \mathrm{~m}^{-3}$
Area $=2 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{I}=3.2 \mathrm{~A}$
$\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}$
$V_{d}=\frac{I}{n e A}=125 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
55. 4

Sol. Stress $=Y \times$ strain
Stress $=\mathrm{Y} \times \frac{\Delta l}{l}$
$=\mathrm{Y} \times \frac{l \alpha \Delta \mathrm{~T}}{l}=\mathrm{Y} \alpha \Delta \mathrm{T}$
Compressive Tension $=$ Stress \times Area of cross section
$=Y A \alpha \Delta T=4 \times 10^{4} \mathrm{~N}$
56. 75

Sol.

At highest point $\mathrm{KE}_{\mathrm{f}}=0$
Initial KE = Translational KE + Rotational KE
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
In case of rolling $\mathrm{v}=\mathrm{R} \omega$
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \times \frac{2}{3} \mathrm{mR}^{2} \times \frac{\mathrm{v}^{2}}{\mathrm{R}^{2}}=\frac{5}{6} \mathrm{mv}^{2}$
Apply energy conservation
$K E_{i}+\mathrm{PE}_{\mathrm{i}}=\mathrm{KE}_{\mathrm{f}}+\mathrm{PE}_{\mathrm{f}}$
$\frac{5}{6} \mathrm{mv}^{2}=\mathrm{mgh}$
$\mathrm{h}=\frac{5}{6 \times 10} \times 9 \mathrm{~m}=\frac{15}{20} \mathrm{~m}=75 \mathrm{~cm}$
57. 30

Sol. Given
$\mathrm{M}=5 \mathrm{~kg}$
$\mathrm{P}_{\mathrm{i}}=10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ (initial momentum)
Impulse $=F \Delta t=\Delta P=P_{f}-P_{i}$
$2 \times 5=P_{f}-10$
$\mathrm{P}_{\mathrm{f}}=20 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ (final momentum)
Increase in $\mathrm{KE}=\mathrm{KE}_{\mathrm{f}}-\mathrm{KE}_{\mathrm{i}}$
$=\frac{P_{f}^{2}}{2 m}-\frac{P_{i}^{2}}{2 m}$
$=\frac{400}{2 \times 5}-\frac{100}{2 \times 5}=40-10=30 \mathrm{~J}$
58. 6

Sol.

$\mathrm{Q}=\mathrm{CV}=600 \times 10^{-12} \times 200=12 \times 10^{-8} \mathrm{C}$
Initial energy $=\frac{1}{2} \mathrm{CV}^{2}$

$$
=\frac{1}{2} \times 600 \times 10^{-12} \times(200)^{2}=12 \mu \mathrm{~J}
$$

When connected to another uncharged capacitor

Charge will be equally distributed on identical capacitor
$\mathrm{Q}^{\prime}=\frac{\mathrm{Q}}{2}=6 \times 10^{-8}$

Final energy $=2 \times \frac{\mathrm{Q}^{\prime 2}}{2 \mathrm{C}}=\frac{\mathrm{Q}^{\prime 2}}{C}$
$\frac{\left(6 \times 10^{-8}\right)^{2}}{600 \times 10^{-12}}=6 \mu \mathrm{~J}$
Energy lost = Initial energy - Final energy $=(12$
-6) $\mu \mathrm{J}=6 \mu \mathrm{~J}$
59. 30

Sol.

$\frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{1}}{\mathrm{u}}=\frac{\mu_{2}-\mu_{1}}{\mathrm{R}}$
$\frac{1.5}{v}-\frac{1}{-15}=\frac{1.5-1}{30}=\frac{1}{60}$
$\frac{1.5}{v}+\frac{1}{15}=\frac{1}{60}$
$\frac{1.5}{\mathrm{v}}=\frac{1}{60}-\frac{1}{15}=\frac{-1}{20}$
$\frac{1.5}{\mathrm{v}}=-\frac{1}{20} \Rightarrow \mathrm{v}=-30 \mathrm{~cm}$
60. 8

Sol.

Magnetic field at centre $\left(B_{1}\right)=\frac{\mu_{0} I}{2 r}$

Magnetic field on axis $=\frac{\mu_{0} \operatorname{Ir}^{2}}{2\left(\mathrm{r}^{2}+\mathrm{d}^{2}\right)^{3 / 2}}$
Value of $\mathrm{d}=\mathrm{r}$ (given)
$B_{2}=\frac{\mu_{0} I}{4 \sqrt{2} r}$
$\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=\frac{\mu_{0} \mathrm{I}}{2 \mathrm{r}} \times \frac{4 \sqrt{2} \mathrm{r}}{\mu_{0} \mathrm{I}}=\frac{2 \sqrt{2}}{1}=\frac{\sqrt{8}}{1}$
$x=8$

CHEMISTRY

Section - A (Single Correct Answer)

61. C

Sol. All non zero digits are significant.
0.00253

Significant figures $=3(2,5,3)$
1.0003

Zeros between non-zero digit are significant.
Thus, 1.0003 has 5 significant figures.
15.0

Significant number $=3$
163
Significant number $=3$
Options C - A, C and D
62. C

Sol. Ozone destruction
$\mathrm{CF}_{2} \mathrm{Cl}_{2} \xrightarrow{\mathrm{~h} v} \mathrm{Cl}^{\bullet}+\mathrm{C}^{\bullet} \mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
$\mathrm{Cl}^{\bullet}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}^{\bullet}+\mathrm{O}_{2}$
$\mathrm{ClO}^{\bullet}+\mathrm{O}^{\bullet} \rightarrow \mathrm{Cl}^{\bullet}+\mathrm{O}_{2}$
63. B

Sol.

IUPAC NAME

2-Methyl-5-oxohexanoic acid
64. C

Sol. Vanderwaal constant - 'a'
(i) $\mathrm{Ar}=1.34$
(ii) $\mathrm{CH}_{4}=2.25$
(iii) $\mathrm{H}_{2} \mathrm{O}=5.46$
(iv) $\mathrm{C}_{6} \mathrm{H}_{6}=18.57$
'a' symbolises force of attraction and directly proportional to surface area
65. C

Sol. Methyl orange is weak base.
Benzenoid structure \rightleftharpoons Quinonoid structure
(yellow coloured)

Statement I - FALSE
Statement II - FALSE
66. D

Sol. In redox titration, indicators are sensitive to oxidation potential and in acid base titration, indicators are sensitive to change in pH of solution. Both statement are false.
67. D

Sol.

68. B

Sol. By using positive catalyst :
(i) $\Delta \mathrm{H}$ does not change
(ii) Activation energy decreases
69. B

Sol. Urea acts as a stabilizer in the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$.
70. D

Sol. Drugs that bind to the receptor site and inhibit its natural function are called antagonists.
71. A

Sol. For option (A)
$\mathrm{Cr}^{+3}: 3 \mathrm{~d}^{3}$
$\mathrm{CN}^{-} \rightarrow \mathrm{SFL}$
\Rightarrow No. of unpaired electrons $=3$
For option (B)
$\mathrm{Fe}^{+2}: 3 \mathrm{~d}^{6}$
$\mathrm{H}_{2} \mathrm{O}$: WFL
\Rightarrow No. of unpaired electrons $=4$
For option (C)
$\mathrm{Co}^{+3}: 3 \mathrm{~d}^{6}$
$\mathrm{NH}_{3}: \mathrm{SFL}$
\Rightarrow No. of unpaired electrons $=0$
For option (D)
$\mathrm{Ni}^{+2}: 3 \mathrm{~d}^{8}$
$\mathrm{NH}_{3}: \mathrm{SFL}$
\Rightarrow No. of unpaired electrons $=2$
72. B

Sol.

73. A

Sol. In case of Hall's process, reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to Al can be done using graphite.
74. A

Sol. Due to bigger size of potassium, it forms more efficient lattices as compared to sodium with silicates.

The abundance of sodium in ocean is more due to the more soluble nature of salt of sodium as compared to potassium salts.
75. C

Sol. According to List I \& List II option C is correct.
76. B

Sol. $\sqrt{v} \propto \mathrm{Z}$
77. D

Sol. Acidic strength $\alpha \frac{1}{+\mathrm{I} \text { effect }}$

Acidic Strength $\alpha-\mathrm{I}$ effect

$$
\mathrm{F}>\mathrm{Cl}>\mathrm{Br}-\mathrm{I} \text { effect order }
$$

(A)

$+\mathrm{I}$
(B)
 $\Rightarrow 3,-\mathrm{I}$ group
(C)

(D)

(E)

So Option D B $>\mathrm{D}>\mathrm{C}>\mathrm{E}>\mathrm{A}$.
78. D

Sol.

(A)

(B)

(C)

(D)

D $>\mathrm{B}>\mathrm{A}>\mathrm{C}$

Option D is correct.
$(-\mathrm{M})$ group increases reactivity where as $(+\mathrm{M})$ group decreases reactivity of Halobenzene towards Nucleophilic substitution reaction.
79. B

Sol. $\frac{\% \mathrm{CaO}}{\% \mathrm{SiO}_{2}+\% \mathrm{Al}_{2} \mathrm{O}_{3}+\% \mathrm{Fe}_{2} \mathrm{O}_{3}}=1.9-2.1$
Option B is correct.
80. A

Sol.

Section - B (Numerical Value)

81. 233

Sol. $\mathrm{K}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{~K}^{+}+\mathrm{SO}_{4}{ }^{2-}$
$0.1 \mathrm{M} \quad 0.2 \mathrm{M} \quad 0.1 \mathrm{M}$
$\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{+2}+\mathrm{SO}_{4}{ }^{2-}$
a-S $\quad S \quad S+0.1 \approx 0.1$
$\mathrm{K}_{\mathrm{SP}}=\mathrm{S} \times 10^{-1}$
$\Rightarrow 1 \times 10^{-10}=\mathrm{S} \times 10^{-1}$
$\Rightarrow \mathrm{S}=10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
So, $\mathrm{S}=10^{-9} \times 233 \mathrm{~g} \mathrm{~L}^{-1}$
So, Answer : 233
82. 556

Sol. Coagulating Value $\propto \frac{1}{\substack{\text { Coagulating power } \\ \text { (C.P) }}}$
$\Rightarrow \frac{(\mathrm{C} . \mathrm{V})_{\mathrm{AlCl}_{3}}}{(\mathrm{C} . \mathrm{V})_{\mathrm{NaCl}}}=\frac{(\mathrm{C} . P)_{\mathrm{NaCl}}}{(\mathrm{C} . P)_{\mathrm{AlCl}_{3}}}$
$\Rightarrow \frac{0.09}{50.04}=\frac{(\mathrm{C} . \mathrm{P})_{\mathrm{NaCl}}}{(\mathrm{C} . \mathrm{P})_{\mathrm{AlCl}_{3}}}$
$\Rightarrow(\mathrm{C} . \mathrm{P})_{\mathrm{AlCl}_{3}}=556(\mathrm{C} . \mathrm{P})_{\mathrm{NaCl}}$
So, Answer $=556$
83. 3

Sol. Radial node $=\mathrm{n}-\ell-1$

$$
\begin{aligned}
& 7 \mathrm{~s} \Rightarrow \mathrm{R} \cdot \mathrm{~N}=7-0-1=6 \\
& 7 \mathrm{p} \Rightarrow \mathrm{R} \cdot \mathrm{~N}=7-1-1=5 \\
& 6 \mathrm{~s} \Rightarrow \mathrm{R} \cdot \mathrm{~N}=6-0-1=5 \\
& 8 \mathrm{p} \Rightarrow \mathrm{R} \cdot \mathrm{~N}=8-1-1=6 \\
& 8 \mathrm{~d} \Rightarrow \mathrm{R} \cdot \mathrm{~N}=8-2-1=5
\end{aligned}
$$

So, Answer is 3
84. 1411

Sol. $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{U}=-1406 \mathrm{KJ} \mathrm{mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$\Delta \mathrm{H}=-1406+(-2) \times 8.3 \times 300=-1406-4.98$
$=-1410.98 \mathrm{KJ} \mathrm{mol}^{-1} \approx-1411$
$\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}=-1411 \mathrm{KJ} \mathrm{mol}^{-1}$
85. 4

Sol. XeF_{5}

XeO_{3}

$\mathrm{XeO}_{2} \mathrm{~F}_{2}$

$\mathrm{XeO}_{3} \mathrm{~F}_{2}$

XeOF_{4}

XeF_{4}

86. 8

Sol. $\frac{\left(\mathrm{T}_{\mathrm{B}}\right)_{\mathrm{x}}}{\left(\mathrm{T}_{\mathrm{B}}\right)_{\mathrm{y}}}=\frac{2}{1} \quad \frac{(\Delta \mathrm{H})_{\mathrm{x}}}{(\Delta \mathrm{H})_{\mathrm{y}}}=\frac{1}{2}$

$$
\begin{aligned}
& \frac{\left(\Delta T_{B}\right)_{x}}{\left(\Delta T_{B}\right)_{y}}=m=\frac{\left(K_{B}\right)_{x} \times \text { molality }}{\left(K_{B}\right)_{y} \times \text { molality }} \\
& =\frac{(\text { T.B })_{x}^{2}}{(\text { T.B })_{y}^{2}} \times \frac{\Delta H_{y}}{(\Delta H)_{x}}=(2)^{2} \times 2=8
\end{aligned}
$$

87. 10

Sol. $\stackrel{(0)}{\mathrm{Fe}}(\mathrm{CO})_{5} \quad \stackrel{(+4)}{\mathrm{V}} \mathrm{O}^{2+} \quad \stackrel{(+6)}{\mathrm{W}} \mathrm{O}_{3}$
So, Sum of oxidation state $=0+4+6=10$
88. 4

Sol. $\left[\mathrm{Mn}(\mathrm{NCS})_{6}\right]^{\mathrm{x}-}$
Number of unpaired electron $=5$
So, Mn must be in +2 oxidation state $\left(\mathrm{Mn}^{+2}\right)$
$\Rightarrow 2+(-6)=-x$
$\Rightarrow-4=-x$
$\Rightarrow \mathrm{x}=4$
89. 1

Sol. Option B is incorrect
So, Answer is 1
90. 6

Sol.

$\frac{\sigma}{\pi}=\frac{12}{2}=6$
So, Answer is 6

So, Answer is 4

