JEE ADVANCED | JEE MAIN | NEET | OLYMPIADS | MHT-CET | FOUNDATION

31-January-2023 (Evening Batch): JEE Main Paper

it. If the current is increased to 16A, the thermal energy developed by the resistor in 10 s will be:

PHYSICS

Section - A (Single Correct Answer)

The H amount of thermal energy is developed by a resistor in 10 s when a current of 4A is passed through

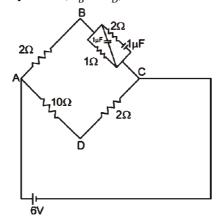
	(A)	Н	(B)	16H	(C)	H/4	(D)	4H	
2.		ody is moving with co At the end of 3rd second		_			_		
	(A)	30	(B)	15 π	(C)	5 π	(D)	$10\sqrt{2}$	
3.	insid	croscope is focused of e the bucket, then mid d in the bucket is:				_		_	
	(A)	75 cm	(B)	50 cm	(C)	18 cm	(D)	12 cm	
4.	is 40	one of mass 1 kg is tion 0 N, then maximum contal plane, is:			•	•	_	•	
	(A)	$20\ ms^{-1}$	(B)	$40\ ms^{-1}$	(C)	$400\ ms^{-1}$	(D)	$10\ ms^{-1}$	
5.	veloc	a solid rod, the Young					sity is 8	$3 \times 10^3 \text{ kg m}^{-3}$. The	
	(A)	$145.75 \times 10^3 \text{ms}^{-1}$			(B)	$3.65 \times 10^3 \text{ ms}^{-1}$			
	(C)	$18.96 \times 10^3 \ ms^{-1}$			(D)	$6.32\times 10^3~ms^{-1}$			
6.	it is	ng conducting wire had bent into a circular case. The ratio of the ma	oil of n	turns. The magnet	ic field	is calculated at th			
	(A)	N : n	(B)	$n^2: N^2$	(C)	$N^2: n^2$	(D)	n:N	
7.		energy of 735 J is gi cule rotates around a be:		-	_	-		_	
	(A)	525 J	(B)	441 J	(C)	572 J	(D)	735 J	
8.	Give	n below are two stat	ements						
	State	ement I: For transmi	tting a	signal, size of anter	na (l)	should be compara	ıble to v	wavelength of signal	
	(at le	east $l = \frac{\lambda}{4}$ in dimensi	on).						
	Statement II: In amplitude modulation, amplitude of carrier wave remains constant (unchanged).								

In the light of the above statements, choose the most appropriate answer from the options given below.

(A) Both Statement I and Statement II are correct
(B) Both Statement I and Statement II are incorrect
(C) Statement I is incorrect but Statement II is correct
(D) Statement I is correct but Statement II is incorrect

		1 2 2		2				
9.								r to increase current
		itivity by 50%. The	_	ige change in voitag	_			
10	` /	100%	(B)		(C)	75%	(D)	0% functions of metals
10.		d B are 4.8 eV and		•		U	ne work	Tunctions of metals
		Metal B will not en			oneci	option		
	(B)		_					
	` ′	Both metals A and		-				
		Metal A will not en		-	10113			
11.			•		rom ea	rth's surface to rea	ach a he	eight above the earth
11.		h is equal to nine tir	-					~
		***					_	
	(A)	<u>vv</u>	(B)	$\frac{W}{100}$	(C)	<u>vv</u>	(D)	$\frac{\mathbf{w}}{2}$
10		-		100		9		3
12.	Mate	ch List-I with List-II	•			T * 4 TT		
		List-I			т	List-II		
	A.	Angular momentur	n		I.	$[ML^2T^{-2}]$		
	B.	Torque			II.	$[ML^{-2}T^{-2}]$		
	C.	Stress			III.	$[ML^2T^{-1}]$		
	D.	Pressure gradient	or from	the entions given 1	IV.	$[ML^{-1}T^{-2}]$		
		ose the correct answ $A \rightarrow I, B \rightarrow IV, C$			(B)	A VIII D VI	$C \setminus N$	Z D NII
		$A \rightarrow I, B \rightarrow IV, C$ $A \rightarrow II, B \rightarrow III, C$			` ′	$A \rightarrow III, B \rightarrow I,$ $A \rightarrow IV, B \rightarrow II,$		
13.								r o f o mH. Inductive
13.		tance in the circuit is		= 200 SIII (020t) IS	Connec	teu across a pure	maucto	of 3 mm. mauchive
		3.14Ω	(B)	6.28Ω	(C)	0.5 Ω	(D)	0.318 Ω
14.	` ′	ch List-I with List-II	` '	0.20 -2	(0)	0.0 ==	(2)	0.0101
		List-I	-			List-II		
	A.	Microwaves			I.	Physiotherapy		
	В.	UV rays			II.	Treatment of car	icer	
	C.	Infra-red rays			III.	Lasik eye surger	y	
	D.	X-rays			IV.	Aircraft navigation	on	
	Cho	ose the correct answ	er from	the option given b	elow:			
	(A)	$A \rightarrow II, B \rightarrow IV, C$	$C \to III$,	$D \rightarrow I$	(B)	$A \rightarrow IV, B \rightarrow I,$	$C \to II$,	$\mathrm{D} \to \mathrm{III}$
	(C)	$A \rightarrow IV, B \rightarrow III, G$	$\mathbb{C} \to I, I$	$D \rightarrow II$	(D)	$A \rightarrow III, B \rightarrow II,$	$C \rightarrow I$	$D \rightarrow IV$
15.	The	radius of electron's s	second s	tationary orbit in B	ohr's a	tom is R. The radi	us of 3r	d orbit will be
	(A)	R/3	(B)	2.25R	(C)	3R	(D)	9R
16.	Und	er the same load, wi	re A hav	ring length 5.0 m as	nd cros	s section $2.5 \times 10^{\circ}$	⁻⁵ m ² str	retches uniformly by
				-			3.0×10^{-1}) ⁻⁵ m ² stretches. The
		of the Young's mod						
	` ′	1:4	(B)	1:1	(C)	1:10	(D)	1:2
17.		sidering a group of p		•		•		
	(A)	-	-		_			be zero at that point.
	(B)	Net potential of the	•	-			can't be	zero at that point.
	(C)	Both the net potent				•		
	(\mathbf{D})	Roth the net notent	121 2114 1	tha nat alactric tial	1 canno	t na zaro at a nom	T .	

- 18. A body of mass 10 kg is moving with an initial speed of 20 m/s. The body stops after 5 s due to friction between body and the floor. The value of the coefficient of friction is:
 (Take acceleration due to gravity g = 10 ms⁻²)
 (A) 0.2
 (B) 0.3
 (C) 0.5
 (D) 0.4
- 19. A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 litres. If the ratio of final pressure of the gas to initial pressure of the gas is . Then the ratio of will be.
 - (A) 4/3 (B) 3/1 (C) 1/2 (D) 3/2
- 20. Given below are two statements:


Statement I: In a typical transistor, all three regions emitter, base and collector have same doping level. **Statement II**: In a transistor, collector is the thickest and base is the thinnest segment.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (A) Both Statement I and Statement II are correct
- (B) Both Statement I and Statement II are incorrect
- (C) Statement I is incorrect but Statement II is correct
- (D) Statement I is correct but Statement II is incorrect

SECTION - B

- 21. A series LCR circuit consists of $R = 80\Omega \, X_L = 100\Omega$, and $X_C = 40\Omega$. The input voltage is 2500 cos(100 π t) V. The amplitude of current, in the circuit, is_____A.
- 22. Two light waves of wavelengths 800 and 600 nm are used in Young's double slit experiment to obtain interference fringes on a screen placed 7 m away from plane of slits. If the two slits are separated by 0.35 mm, then shortest distance from the central bright maximum to the point where the bright fringes of the two wavelength coincide will be _____mm.
- 23. A water heater of power 2000 W is used to heat water. The specific heat capacity of water is $4200 \text{ J kg}^{-1} \text{ K}^{-1}$. The efficiency of heater is 70%. Time required to heat 2 kg of water from 10°C to 60°C is _____s. (Assume that the specific heat capacity of water remains constant over the temperature range of the water).
- 24. A ball is dropped from a height of 20 m. If the coefficient of restitution for the collision between ball and floor is 0.5, after hitting the floor, the ball rebounds to a height of ______m.
- 25. Two discs of same mass and different radii are made of different materials such that their thicknesses are 1 cm and 0.5 cm respectively. The densities of materials are in the ratio 3:5. The moment of inertia of these discs respectively about their diameters will be in the ratio of . The value of x is_____.
- 26. If the binding energy of ground state electron in a hydrogen atom is 13.6 eV, then, the energy required to remove the electron from the second excited state of Li^{2+} will be: $x \times 10^{-1}$ eV. The value of x is
- 27. For the given circuit, in the steady state, $|V_B V_D| = \underline{\hspace{1cm}} V$.

28.	Two parallel plate capacitors C_1 and C_2 each having capacitance of 10 μ F are individually charged by a
	100 V D.C. source. Capacitor C ₁ is kept connected to the source and a dielectric slab is inserted between
	it plates. Capacitor C ₂ is disconnected from the source and then a dielectric slab is inserted in it. Afterwards
	the capacitor C ₁ is also disconnected from the source and the two capacitors are finally connected in
	parallel combination. The common potential of the combination will beV.
	(Assuming Dielectric constant = 10)

29. The displacement equations of two interfering waves are given by

$$y_1 = 10\sin\left(\omega t + \frac{\pi}{3}\right)$$
cm, $y_2 = 5\left[\sin(\omega t) + \sqrt{3}\cos\omega t\right]$ cm

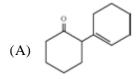
respectively. The amplitude of the resultant wave is _____cm

30. Two bodies are projected from ground with same speeds 40 ms^{-1} at two different angles with respect to horizontal. The bodies were found to have same range. If one of the body was projected at an angle of 60° , with horizontal then sum of the maximum heights, attained by the two projectiles, is _____m. (Given $g = 10 \text{ms}^{-2}$).

CHEMISTRY

Section - A (Single Correct Answer)

- 31. In the following halogenated organic compounds the one with maximum number of chlorine atoms in its structure is:
 - (A) Chloral
- (B) Gammaxene
- (C) Chloropicrin
- (D) Freon-12
- 32. Incorrect statement for the use of indicators in acid-base titration is :
 - (A) Methyl orange may be used for a weak acid vs weak base titration.
 - (B) Methyl orange is a suitable indicator for a strong acid vs weak base titration
 - (C) Phenolphthalein is a suitable indicator for a weak acid vs strong base titration
 - (D) Phenolphthalein may be used for a strong acid vs strong base titration.
- 33. Which of the following compounds are not used as disinfectants?
 - A. Chloroxylenol
 - B. Bithional
 - C. Veronal
 - D. Prontosil
 - E. Terpineol

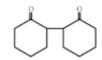

Choose the correct answer from the options given below.

- (A) A, B, E
- (B) A, E
- (C) B, D, E
- (D) C, D
- 34. A hydrocarbon 'X' with formula C₆H₈ uses two moles of H₂ on catalytic hydrogenation of its one mole. On ozonolysis, 'X' yields two moles of methane dicarbaldehyde. The hydrocarbon 'X' is
 - (A) hexa-1,3,5-triene

(B) 1-methylcyclopenta-1,4-diene

(C) cyclohexa-1,3-diene

- (D) cyclohexa-1,4-diene
- 35. Cyclohexylamine when treated with nitrous acid yields (P). On treating (P) with PCC results in (Q). When (Q) is heated with dil. NaOH we get (R) The final product (R) is



(C)

Given below are two statements:

Statement I: Upon heating a borax bead dipped in cupric sulphate in a luminous flame, the colour of the bead becomes green.

Statement II: The green colour observed is due to the formation of copper(I) metaborate.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (A) Both Statement I and Statement II are true
- (B) Statement I is true but Statement II is false
- (C) Both Statement I and Statement II are false
- (D) Statement I is false but Statement II is true
- 37. Evaluate the following statements for their correctness.
 - Α. The elevation in boiling point temperature of water will be same for 0.1 M NaCl and 0.1 M urea.
 - В. Azeotropic mixtures boil without change in their composition.
 - C. Osmosis always takes place from hypertonic to hypotonic solution.
 - The density of 32% H₂SO₄ solution having molarity 4.09 M is approximately 1.26 g mL⁻¹. D.
 - Ε. A negatively charged sol is obtained when KI solution is added to silver nitrate solution.

Choose the correct answer from the options given below.

- (A) B, D, and E only
- (B) A, B, and D only (C)
- A and C only
- (D) B and D only
- 38. Compound A, C₅H₁₀O₅, given a tetraacetate with Ac₂O and oxidation of A with Br₂-H₂O gives an acid, C₅H₁₀O₆. Reduction of A with HI gives isopentane. The possible structure of A is:

- 39. Arrange the following orbitals in decreasing order of energy?
 - n = 3, $\ell = 0$, m = 0
 - **B.** n = 4, $\ell = 0$, m = 0
 - **C.** $n = 3, \ell = 1, m = 0$
 - **D.** $n = 3, \ell = 2, m = 1$

The **correct** option for the order is:

- (A) B > D > C > A
 - D > B > C > A(B)
- (C)
- A > C > B > D (D) D > B > A > C
- 40. The Lewis acid character of boron tri-halides follows the order:
 - (A) $BBr_3 > BI_3 > BCl_3 > BF_3$

 $BCl_{2} > BF_{2} > BBr_{2} > BI_{3}$ (B)

(C) $BF_3 > BCl_3 > BBr_3 > BI_3$

(D) $BI_3 > BBr_3 > BCl_3 > BF_3$

41. Match List-I with List-II

	List-I		List-II
A.	Physisorption	I.	Single layer adsorption
B.	Chemisorption	II.	20-40 kJ mol ⁻¹
C.	$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$	III.	Chromatography
 D.	Analytical Application or Adsorption	IV.	Heterogeneous catalysis
			<u> </u>

Choose the correct answer from the options given below.

(A) A-II, B-III, C-I, D-IV

(B) A–III, B–IV, C–I, D–II

(C) A-IV, B-II, C-III, D-I

- (D) A-II, B-I, C-IV, D-III
- 42. Given below are two statements:

One is labelled as Assertion (A) and the other is labelled as Reason (R).

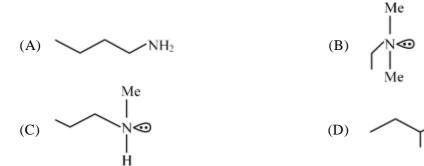
Assertion (A): The first ionization enthalpy of 3d-series elements is more than that of group 2 metals.

Reason (R): In 3d-series of elements successive filling of d-orbitals takes place.

In the light of the above statements, choose the correct answer from the options given below.

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (C) (A) is false but (R) is true
- (D) (A) is true but (R) is false
- 43. The element playing significant role in neuro-muscular function and interneuronal transmission is :
 - (A) Be
- (B) Ca
- (C) L
- (D) Mg

44. Given below are two statements:


Statement I: H₂O₂ is used in the synthesis of Cephalosporin.

Statement II: H₂O₂ is used for the restoration of aerobic conditions to sewage wastes.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (A) Both Statement I and Statement II are correct
- (B) Statement I is incorrect but Statement II is correct
- (C) Statement I is correct but Statement II is incorrect
- (D) Both Statement I and Statement II are incorrect
- 45. The normal rain water is slightly acidic and its pH value is 5.6 because of which one of the following?
 - (A) $CO_2 + H_2O \rightarrow H_2CO_3$

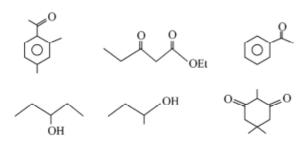
- (B) $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$
- (C) $2SO_2 + O_2 + 2H_2O \rightarrow 2H_2SO_4$
- (D) $N_2O_4 + H_2O \rightarrow 2HNO_3$
- 46. When a hydrocarbon A undergoes complete combustion it requires 11 equivalents of oxygen and produces 4 equivalents of water. What is the molecular formula of A?
 - $(A) C_{o}H_{o}$
- (B) $C_{11}H_4$
- (C) C_5H_8
- (D) C.,H
- 47. An organic compound [A] (C₄H₁₁N), shows optical activity and gives N₂ gas on treatment with HNO₂. The compound [A] reacts with PhSO₂Cl producing a compound which is soluble in KOH. The structure of A is

	(B) Van-Arkel method is used to purify tungsten.									
	(C) Cast iron is obtained by melting pig iron with scrap iron and coke using hot air blast.									
	(D)	The malleable iron	is prep	ared from cast iron	ı by oxid	dising impurities	in a revei	beratory furnace.		
49.	Whi	ch of the following e	elements	have half-filled f-	orbitals	in their ground s	tate?			
	[Given: Atomic number, $Sm = 62$; $Eu = 63$; $Tb = 65$; $Gd = 64$, $Pm = 61$]									
	A.	Sm	В.	Eu	C.	Tb	D.	Gd		
	E.	Pm								
	Cho	ose the correct answ	er fron	the options given	below.					
	(A)	B and D only	(B)	A and E only	(C)	A and B only	(D)	C and D only		
50.		Dumas method for the sed over:	e estima	ation of N_2 , the sar	nple is l	neated with coppe	er oxide a	and the gas evolved is		
	(A)	Ni	(B)	Copper gauze	(C)	Pd	(D)	Copper oxide		
				SECTI	ON - B					
51.	If th	e CFSE of [Ti(H ₂ O)	₆] ³⁺ is -	-96.0 kJ/mol, this o	complex	will absorb maxi	imum at v	vavelength nm.		
	[nearest integer]									
	Assume, Planck's constant (h) = 6.4×10^{-34} Js									
	Speed of light (c) = 3.0×10^8 m/s and									
	Avo	gadro's constant (N _A	$)=6\times$	$10^{23} / mol$						
52.	Amongst the following, the number of species having the linear shape is									
	XeF	$F_2, I_3^+, C_3O_2, I_3^-, CO_2$, SO ₂ , I	BeCl and BCl_2^{Θ}						
53.	The	resistivity of a 0.8 N	A soluti	on of an electrolyte	e is 5 ×	$10^{-3} \ \Omega \text{cm}.$				
	Its n	Its molar conductivity is $___ \times 10^4 \ \Omega^{-1} \ cm^2 \ mol^{-1}$.								
	_	arest integer]								
54.		298 K, the solubility oride is	of silve	er chloride in water	r is 1.43	$4 \times 10^{-3} \text{ g L}^{-1}$. T	The value	of $-\log K_{sp}$ for silver		
	[Giv	ven mass of Ag is 10°	7.9 1 g	mol ⁻¹ and mass of	Cl is 35	.5 g mol ⁻¹]				
55.	0.05 1.00									
	In the sample of $M_{0.83}O_{1.00}$, the percentage of metal ions existing in +2 oxidation state is%.									
	[nearest integer]									
56.	Assume carbon burns according to following equation:									
	$2C_{(s)} + O_{2(g)} \rightarrow 2CO(g)$									
	When 12 g carbon is burnt in 48 g of oxygen, the volume of carbon monoxide produced is $___ \times 10^{-1}$ L at STP.									
	[nea	rest integer]								
		v en : Assume CO as deal gas at STP is 22	_		2 g mol-	¹ , Mass of O is 1	6 g mol ⁻¹	and molar volume of		
57.		number of alkali me ning stable super oxi			having i	onization enthalp	y greater	than 400 kJ mol ⁻¹ and		
5	3 C I	NSTITIITF								

48. Which one of the following statements is incorrect?

(A) Boron and Indium can be purified by zone refining method.

58. Enthalpies of formation of


 $CCl_4(g)$, $H_2O(g)$, $CO_2(g)$ and HCl(g) are

-105, -242, -394 & -92 kJ mol⁻¹ respectively. The magnitude of enthalpy of the reaction given below is ____ kJ mol⁻¹.

[nearest integer]

$$CCl_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4HCl(g)$$

59. The number of molecules which gives haloform test among the following molecules is

The rate constant for a first order reaction is 20 min⁻¹. The time required for the initial concentration of the reactant to reduce to its $\frac{1}{32}$ level is ____ × 10⁻² min.

[Nearest integer]

[**Given :** $\ln 10 = 2.303$; $\log 2 = 0.3010$]

MATHEMATICS

Section - A (Single Correct Answer)

- 61. If $\phi(x) = \frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x} (4\sqrt{2}\sin t 3\phi'(t))dt$, x > 0, then $\phi'\left(\frac{\pi}{4}\right)$ is equal to :

 - (A) $\frac{8}{\sqrt{\pi}}$ (B) $\frac{4}{6+\sqrt{\pi}}$ (C) $\frac{8}{6+\sqrt{\pi}}$ (D) $\frac{4}{6-\sqrt{\pi}}$
- 62. If a point P(α , β , γ) satisfying (α β γ) $\begin{pmatrix} 2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8 \end{pmatrix}$ = (0 0 0) lies on the plane 2x + 4y + 3z = 5, then 6α +

 $9\beta + 7\gamma$ is equal to :

- (A) -1
- (B) $\frac{11}{5}$ (C) $\frac{5}{4}$
- (D) 11
- 63. Let a_1 , a_2 , a_3 ,.... be an A.P. If $a_7 = 3$, the product a_1a_4 is minimum and the sum of its first n terms is zero, then $n!-4a_{n(n\,+\,2)}$ is equal to :
 - (A) 24

(D)

- 64. Let $(a, b) \subset (0, 2\pi)$ be the largest interval for which $\sin^{-1}(\sin \theta) \cos^{-1}(\sin \theta) > 0$, $\theta \in (0, 2\pi)$, holds. If $\alpha x^2 + \beta x + \sin^{-1}(x^2 6x + 10) + \cos^{-1}(x^2 6x + 10) = 0$ and $\alpha \beta = b a$, then α is equal to:
 - (A) $\frac{\pi}{48}$
- (B) $\frac{\pi}{16}$
- (C) $\frac{\pi}{8}$
- (D) $\frac{\pi}{12}$
- 65. Let y = y(x) be the solution of the differential equation

 $(3y^2 - 5x^2)y dx + 2x (x^2 - y^2) dy = 0$ such that y(1) = 1, then $|(y(2))^3 - 12y(2)|$ is equal to :

- (A) $32\sqrt{2}$
- (B) 64
- (C) $16\sqrt{2}$
- (D) 32
- 66. The set of all values of a^2 for which the line x + y = 0 bisects two distinct chords drawn from a point

 $P\bigg(\frac{1+a}{2},\ \frac{1-a}{2}\bigg) \ \text{on the circle } 2x^2+2y^2-(1+a)\ x-(1-a)\ y=0 \ \text{is equal to}:$

- (A) $(8, \infty)$
- (B) $(4, \infty)$
- (C) (0,4]
- (D) (2, 12]

67. Among the relations

$$S = \left\{ (a, b) : a, b \in \mathbb{R} - \{0\}, 2 + \frac{a}{b} > 0 \right\}$$

And $T = \{(a, b): a, b \in \mathbb{R}, a^2 - b^2 \in Z\},\$

(A) S is transitive but T is not

- (B) T is symmetric but S is not
- (C) Neither S nor T is transitive
- (D) Both S and T are symmetric

68. The equation

$$e^{4x} + 8e^{3x} + 13e^{2x} - 8e^x + 1 = 0, x \in R \text{ has}$$
:

- (A) two solutions and both are negative
- (B) no solution
- (C) four solutions two of which are negative
- (D) two solutions and only one of them is negative
- 69. The number of values of $r \in \{p, q, \sim p, \sim q\}$ for which $((p \land q) \Rightarrow (r \lor q)) \land ((p \land r) \Rightarrow q)$ is a tautology, is
 - (A) 3
- (B) 2
- (C) 1
- (D) 4
- 70. Let $f: \mathbb{R} \{2, 6\} \to \mathbb{R}$ be real valued function defined as $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$. Then range of f is
 - (A) $\left(-\infty, -\frac{21}{4}\right] \cup [0, \infty)$

(B) $\left(-\infty, -\frac{21}{4}\right] \cup (0, \infty)$

(C) $\left(-\infty, -\frac{21}{4}\right] \cup \left[\frac{21}{4}, \infty\right)$

- (D) $\left(-\infty, -\frac{21}{4}\right] \cup [1, \infty)$
- 71. $\lim_{x \to \infty} \frac{\left(\sqrt{3x+1} + \sqrt{3x-1}\right)^6 + \left(\sqrt{3x+1} \sqrt{3x-1}\right)^6}{\left(x + \sqrt{x^2 1}\right)^6 + \left(x \sqrt{x^2 1}\right)^6} x^3$
 - (A) is equal to 9

(B) is equal to 27

(C) does not exist

(D) is equal to $\frac{27}{2}$

(A) 6

(A) $\frac{3}{4}$

74.	Let the plane P: $8x + \alpha_1 y + \alpha_2 z + 12 = 0$ be parallel to the line L: $\frac{x+2}{2} = \frac{y-3}{3} = \frac{z+4}{5}$. If the intercept of								
	P on the y-axis is 1, then the distance between P and L is :								
	(A) $\sqrt{14}$	(B)	$\frac{6}{\sqrt{14}}$	(C)	$\sqrt{\frac{2}{7}}$	(D)	$\sqrt{\frac{7}{2}}$		
75.	The foot of perpendicular B, C is $(2, a, 4)$, $a \in N$. points is NOT on P?		-				-		
	(A) $(2, 2, 4)$	(B)	(0, 4, 4)	(C)	(3, 0, 4)	(D)	(0, 6, 3)		
76.	Let the mean and standa and the mean and standa the mean and variance of then the sum of variance	rd devia	ation of marks of clarks of the combined	lass B	of n students be res	pectiv	ely 55 and $30 - \alpha$. If		
	(A) 500	(B)	650	(C)	450	(D)	900		
77.	Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = \hat{i}$	$-\hat{\mathbf{j}} + 2\hat{\mathbf{l}}$	and $\vec{c} = 5\hat{i} - 3\hat{j} + 3\hat{j}$	-3k be	e three vectors. If	\vec{r} is	a vector such that,		
	$\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$. Then	$25 \vec{r} ^2$ is equal to :						
	(A) 449	(B)	336	(C)	339	(D)	560		
78.	Let H be the hyperbola, rectum is	whose :	foci are $(1 \pm \sqrt{2}, 0)$) and ϵ	eccentricity is $\sqrt{2}$.	Then t	the length of its latus		
	(A) 2	(B)	3	(C)	$\frac{5}{2}$	(D)	$\frac{3}{2}$		
79.	Let $\alpha > 0$. If $\int_{0}^{\alpha} \frac{x}{\sqrt{x + \alpha}}$	$\frac{1}{\sqrt{x}}dx =$	$=\frac{16+20\sqrt{2}}{15}$, then	α is eq	ual to:				
	(A) 2	(B)	4	(C)	$\sqrt{2}$	(D)	$2\sqrt{2}$		
80.	The complex number $z =$	$=\frac{i}{\cos\frac{\pi}{3}}$	$\frac{-1}{+i\sin\frac{\pi}{3}}$ is equal to	:					
	$(A) \sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$	$\left(\frac{5\pi}{2}\right)$		(B)	$\cos\frac{\pi}{2} - i\sin\frac{\pi}{12}$				
	(C) $\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$	$\left(\frac{t}{2}\right)$		(D)	$\sqrt{2}i\left(\cos\frac{5\pi}{12} - i\sin^2\theta\right)$	$\left(\frac{5\pi}{12}\right)$			
P	AGE No. : (10)						3\$ INSTITUTE		

72. Let P be the plane, passing through the point (1, -1, -5) and perpendicular to the line joining the points (4, 1, -5)

73. The absolute minimum value of the function $f(x) = |x^2 - x + 1| + [x^2 - x + 1]$, where [t] denotes the greatest

(B) $\frac{3}{2}$ (C) $\frac{1}{4}$ (D) $\frac{5}{4}$

(D) 7

-3) and (2, 4, 3). Then the distance of P from the point (3, -2, 2) is

(B)

integer function, in the interval [-1, 2], is:

SECTION - B

- 81. The Coefficient of x^{-6} in the expansion of $\left(\frac{4x}{5} + \frac{5}{2x^2}\right)^9$, is _____
- 82. Let the area of the region $\{(x, y): |2x-1| \le y \le |x^2-x|, 0 \le x \le 1\}$ be A. Then $(6A + 11)^2$ is equal to_____.
- 83. If ${}^{2n+1}P_{n-1}:{}^{2n-1}P_n=11:21$, then n^2+n+15 is equal to :
- 84. If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2} \frac{4}{x^{\ell}}\right)^9$ is -84 and the Coefficient of $x^{-3\ell}$ is $2^{\alpha}\beta$, where $\beta < 0$ is an odd number, Then $|\alpha \ell \beta|$ is equal to
- 85. Let \vec{a} , \vec{b} , \vec{c} be three vectors such that $|\vec{a}| = \sqrt{31}$, $4|\vec{b}| = |\vec{c}| = 2$ and $2(\vec{a} \times \vec{b}) = 3(\vec{c} \times \vec{a})$. If the angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^2$ is equal to _____.
- 86. Let S be the set of all $a \in N$ such that the area of the triangle formed by the tangent at the point P (b, c), b, $c \in N$, on the parabola $y^2 = 2ax$ and the lines x = b, y = 0 is 16 unit², then $\sum_{a \in S} a$ is equal to _____.
- 87. The sum $1^2 2.3^2 + 3.5^2 4.7^2 + 5.9^2 \dots + 15.29^2$ is _____.
- 88. Let A be the event that the absolute difference between two randomly chosen real numbers in the sample space [0, 60] is less than or equal to a. If $P(A) = \frac{11}{36}$, then a is equal to _____.
- 89. Let $A = [a_{ij}]$, $a_{ij} \in Z \cap [0, 4]$, $1 \le i$, $j \le 2$. The number of matrices A such that the sum of all entries is a prime number $p \in (2, 13)$ is _____.
- 90. Let A be a $n \times n$ matrix such that |A| = 2. If the determinant of the matrix Adj (2. Adj(2A⁻¹) is 2^{84} , then n is equal to_____.

SEE ADVANCED | SEE MAIN | NEET | SETMINADS | MITTISET | POORDATION

31-January-2023 (Evening Batch): JEE Main Paper

ANSWER KEY

Physics

Single Choice Correct									
1.	В	2.	D	3.	A	4.	A	5.	D
6.	C	7.	A	8.	D	9.	D	10.	D
11.	В	12.	В	13.	A	14.	C	15.	В
16.	В	17.	A	18.	D	19.	A	20.	C
Nun	nerical Value								
21.	25	22.	48	23.	300	24.	5	25.	5
26.	136	27.	1	28.	55	29.	20	30.	80
				(Chemistry				
Sing	le Choice Co	rrect							
31.	В	32.	A	33.	D	34.	D	35.	В
36.	C	37.	D	38.	A	39.	В	40.	D
41.	D	42.	A	43.	В	44.	A	45.	A
46.	A	47.	D	48.	В	49.	A	50.	В
Nun	nerical Value								
51.	480	52.	5	53.	25	54.	10	55.	59
56.	227	57.	2	58.	173	59.	3	60.	17
				M	athematics				
Sing	le Choice Co	rrect							
61.	C	62.	D	63.	A	64.	D	65.	A
66.	A	67.	В	68.	A	69.	В	70.	A
71.	В	72.	C	73.	A	74.	A	75.	C
76.	A	77.	C	78.	A	79.	A	80.	A
Nun	nerical Value								
81.	5040	82.	125	83.	45	84.	98	85.	3
86.	146	87.	6925	88.	10	89.	204	90.	5

PAGE No. : (12)

