24-January-2023 (Morning Batch) : JEE Main Paper

PHYSICS

Section - A (Single Correct Answer)

1. A

Sol. Force per unit length between two parallel straight
Wire $=\frac{\mu_{0} i_{1} i_{2}}{2 \pi \mathrm{~d}}$
$\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\frac{\mu_{0}(10)^{2}}{2 \pi(5 \mathrm{~cm})}}{\frac{\mu_{0}(20)^{2}}{2 \pi\left(\frac{5 \mathrm{~cm}}{2}\right)}}=\frac{1}{8}$
$\Rightarrow \mathrm{F}_{2}=8 \mathrm{~F}_{1}$
2. B

Sol. Statement-I
When elevator is moving wi th uni form speed T $=\mathrm{Fg}$

Statement-II

When elevator is going down with increasing speed, its acceleration is downward.

Hence
$\mathrm{W}-\mathrm{N}=\frac{\mathrm{W}}{\mathrm{g}} \times \mathrm{a}$ $\mathrm{N}=\mathrm{W}\left(1-\frac{\mathrm{a}}{\mathrm{g}}\right)$ i.e. less than weight.
3. C

Sol. (1) Stopping potential depends on both frequency of light and work function.
(2) Saturation current \propto intensity of light
(3) Maximum KE depends on frequency
(4) Photoelectric effect is explained using particle theory
4. D

Sol. Acceleration due to gravity at height h
$g^{\prime}=\frac{g}{\left[1+\frac{h}{R}\right]^{2}}$
So weight at given height

$$
\mathrm{mg}^{\prime}=\frac{\mathrm{mg}}{\left[1+\frac{\mathrm{h}}{\mathrm{R}}\right]^{2}}=\frac{18}{\left[1+\frac{1}{2}\right]^{2}}=8 \mathrm{~N}
$$

5. D

Sol. Elongation in wire $\delta=\frac{\mathrm{Fl}}{\mathrm{AY}}$
6. A

Sol. Work done $=P \Delta V$
$=3 \times 10^{5} \times 1600 \times 10^{-6}$
$=480 \mathrm{~J}$
Only 10% of heat is used in work done.
Hence $\Delta \mathrm{Q}=4800 \mathrm{~J}$
The rest goes in internal energy, which is 90% of heat.
Change in internal energy $=0.9 \times 4800=4320 \mathrm{~J}$
7. D

Sol. Modulation index
$=\frac{\text { Amplitude of modulating signal }}{\text { Amplitude of carrier wave }}$
$\mu=\frac{1}{2}$
8. B

Sol.
 $4 g \sin 60^{\circ}-T=4 a$

$\mathrm{T}-\mathrm{g} \sin 30^{\circ}=\mathrm{a}$
Solving (A) and (B) we get.
$20 \sqrt{3}-T=4 T-20$
$\mathrm{T}=4(\sqrt{3}+1) \mathrm{N}$
9. B

Sol. Photodiodes are operated in reverse bias as fractional change in current due to light is more easy to detect in reverse bias.
10. A

Sol. Magnetic field vector will be in the direction of $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
magnitude of $B=\frac{E}{C}=\frac{K}{\omega} E$
Or $\quad \overrightarrow{\mathrm{B}}=\frac{1}{\omega}(\overrightarrow{\mathrm{~K}} \times \overrightarrow{\mathrm{E}})$
11. C

Sol. Magnetic field due to current carrying circular loop on its axis is given as
$\frac{\mu_{0} \mathrm{ir}^{2}}{2\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$

At centre, $x=0, B_{1}=\frac{\mu_{0} i}{2 r}$

At $x=r, B_{2}=\frac{\mu_{0} i}{2 \times 2 \sqrt{2} r}$
$\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=2 \sqrt{2}$
12. C

Sol. From the given equation $\mathrm{k}=8 \mathrm{~m}^{-1}$ and $\omega=4 \mathrm{rad} /$ s

Velocity of wave $=\frac{\omega}{\mathrm{k}}$
$\mathrm{v}=\frac{4}{8}=0.5 \mathrm{~m} / \mathrm{s}$
13. D

Sol. Equivalent resistance of circuit
$\mathrm{R}_{\mathrm{eq}}=3+1+2+4+2=12 \Omega$
Current through battery $\mathrm{i}=\frac{24}{12}=2 \mathrm{~A}$
$I_{4}=\frac{R_{5}}{R_{4}+R_{5}} \times 2=\frac{5}{20+5} \times 2=\frac{2}{5} A$
$\mathrm{I}_{5}=2-\frac{2}{5}=\frac{8}{5} \mathrm{~A}$
14. B

Sol.

$\mu_{\mathrm{a}} \sin \mathrm{i}_{1}=\mu_{\mathrm{g}} \sin \left(90-\mathrm{i}_{1}\right)$
$\tan \mathrm{i}_{1}=\frac{\mu_{\mathrm{g}}}{\mu_{\mathrm{a}}}$
When going from glass to air
$\tan \mathrm{i}_{2}=\frac{\mu_{\mathrm{a}}}{\mu_{\mathrm{g}}}=\cot \mathrm{i}_{1}$

Hence $\mathrm{i}_{2}=\frac{\pi}{2}-\mathrm{i}_{1}$
15. A

Sol. $\mathrm{F}=\frac{1}{\left(4 \pi \varepsilon_{0}\right)} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{kd}^{2}}($ in medium $)$
$\mathrm{F}_{\text {Air }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{~d}^{\prime 2}}$
$\mathrm{F}=\mathrm{F}_{\mathrm{Air}}$
$\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{0} \mathrm{kd}^{2}}=\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{0} \mathrm{~d}^{\prime 2}}$
$d^{\prime}=d \sqrt{k}$
16. C

Sol. ${ }_{84}^{218} \mathrm{~A} \xrightarrow{\alpha}{ }_{82}^{214} \mathrm{~A}_{1} \xrightarrow{\beta^{-}}{ }_{83}^{214} \mathrm{~A}_{2} \xrightarrow{\gamma}{ }_{83}^{214} \mathrm{~A}_{3}$
${ }_{83}^{214} \mathrm{~A}_{3} \xrightarrow{\alpha}{ }_{81}^{210} \mathrm{~A}_{4} \xrightarrow{\beta^{+}}{ }_{80}^{210} \mathrm{~A}_{5} \xrightarrow{\gamma}{ }_{80}^{210} \mathrm{~A}_{6}$
17. B

Sol. Statement-I
$\mathrm{T}_{1}=-73^{\circ} \mathrm{C}=200 \mathrm{~K}$
$\mathrm{T}_{2}=527^{\circ} \mathrm{C}=800 \mathrm{~K}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\sqrt{\frac{3 \mathrm{RT}_{1}}{\mathrm{M}}}}{\sqrt{\frac{3 \mathrm{RT}_{2}}{\mathrm{M}}}}=\sqrt{\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}=\sqrt{\frac{200}{800}}=\frac{1}{2}$
$\mathrm{V}_{2}=2 \mathrm{~V}_{1}$ (True)
Statement-II
$\mathrm{PV}=\mathrm{nRT}$
Translational $\mathrm{KE}=\frac{3}{2} \mathrm{nRT}$ (False)
18. C

Sol. $\mathrm{H}_{\text {max }}=\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}=136 \mathrm{~m}$

$$
\begin{aligned}
& R_{\max }=\frac{v^{2}}{g}=2 H_{\max } \\
& =2(136)=272 \mathrm{~m}
\end{aligned}
$$

19. B

Sol. $\mathrm{EMF}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{BA}-0}{\mathrm{t}}$

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2}=\pi\left(\frac{0.1^{2}}{\pi}\right)=0.01 \\
& \mathrm{~B}=0.5 \\
& \mathrm{EMF}=\frac{(0.5)(0.01)}{0.5}=0.01 \mathrm{~V}=10 \mathrm{mV}
\end{aligned}
$$

20. B

Sol. (A) Planck's constant

$$
\begin{align*}
& \mathrm{h} \nu=\mathrm{E} \\
& \mathrm{~h}=\frac{\mathrm{E}}{v}=\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}}{\mathrm{~T}^{-1}}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1} \tag{III}
\end{align*}
$$

(B) $\mathrm{E}=\mathrm{qV}$

$$
\begin{equation*}
V=\frac{E}{q}=\frac{M^{1} L^{2} T^{-2}}{A^{1} T^{1}}=M^{1} L^{2} T^{-3} A^{-1} \tag{IV}
\end{equation*}
$$

(C) ϕ (work function) $=$ energy
$=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
(D) Momentum (p) = F.t

$$
\begin{aligned}
& =\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~T}^{1} \\
& =\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}
\end{aligned}
$$

Section - B (Numerical Value)

21. 40

Sol. $\frac{1}{2} \times 2 \times \mathrm{v}^{2}=10000$
$\Rightarrow \quad \mathrm{v}^{2}=10000$
$\Rightarrow \quad \mathrm{v}=100 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \quad \mathrm{v}=\mathrm{at}=\mathrm{a} \times 5=100$
$\Rightarrow \quad \mathrm{a}=20 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}=2 \times 20=40 \mathrm{~N}$
22. 5

Sol. $\mathrm{F}=-2 \mathrm{kx}, \mathrm{a}=-\frac{2 \mathrm{kx}}{\mathrm{m}}, \omega=\sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}}=\sqrt{\frac{2 \times 20}{2}}$
$=\sqrt{20} \mathrm{rad} / \mathrm{s}$
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{20}}=\frac{\pi}{\sqrt{5}}$
$\mathrm{x}=5$
23. 12

Sol. d_{0} at $27^{\circ} \mathrm{C}$ \& d_{1} at $177^{\circ} \mathrm{C}$
$\mathrm{d}_{1}=\mathrm{d}_{0}(1+\alpha \Delta \mathrm{T})$
$\mathrm{d}_{1}-\mathrm{d}_{0}=5 \times 1.6 \times 10^{-5} \times 150 \mathrm{~cm}$
$=12 \times 10^{-3} \mathrm{~cm}$
24. 10

Sol. $\Delta \omega=\frac{\mathrm{R}}{\mathrm{L}}$
$\mathrm{Q}=\frac{\omega_{0}}{\Delta \omega}=\omega_{0} \frac{\mathrm{~L}}{\mathrm{R}}$
$\omega_{0}=\frac{1}{\sqrt{3 \times 27 \times 10^{-6}}}=\frac{1}{9 \times 10^{-3}}$
$\frac{\mathrm{Q}}{\Delta \omega}=\frac{\omega_{0} \frac{\mathrm{~L}}{\mathrm{R}}}{\frac{\mathrm{R}}{\mathrm{L}}}=\omega_{0} \frac{\mathrm{~L}^{2}}{\mathrm{R}^{2}}=\sqrt{\frac{\mathrm{L}}{\mathrm{LC}}} \frac{\mathrm{L}^{2}}{\mathrm{R}^{2}}$
$=\frac{1}{9 \times 10^{-3}} \times \frac{9}{100}=10 \mathrm{~s}$
25. 2

Sol. $\mathrm{R}=\rho \frac{l}{\mathrm{~A}}$, the cross-sectional area is $\pi\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)$
$\mathrm{R}=\rho \frac{l}{\pi\left(\mathrm{~b}^{2}-\mathrm{a}^{2}\right)}=\frac{2.4 \times 10^{-8} \times 3.14}{3.14 \times\left(4^{2}-2^{2}\right) \times 10^{-6}}$
$=2 \times 10^{-3} \Omega \rightarrow \mathrm{n}=2$
26. 120

Sol. $\frac{1}{\mathrm{f}_{1}}=(1.75-1)\left(-\frac{1}{30}\right)$
$\Rightarrow \quad \mathrm{f}_{1}=-40 \mathrm{~cm}$
$\frac{1}{\mathrm{f}_{1}}=(1.75-1)\left(\frac{1}{30}\right) \Rightarrow \mathrm{f}_{2}=40 \mathrm{~cm}$
Image from L_{1} will be virtual and on the left of L_{1} at focal length 40 cm . So the object for L_{2} will be 80 cm from L_{2} which is 2 f . Final image is formed at 80 cm from L_{2} on the right.
So $\mathrm{x}=120$
27. 110

Sol. $\mathrm{I}_{\mathrm{cm}}=\frac{2}{5} \mathrm{MR}^{2}$
$\mathrm{I}_{\mathrm{PQ}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{md}^{2}$
$\mathrm{I}_{\mathrm{PQ}}=\frac{2}{5} \mathrm{mR}^{2}+\mathrm{m}(10 \mathrm{~cm})^{2}$
For radius of gyration
$\mathrm{I}_{\mathrm{PQ}}=\mathrm{mk}^{2}$
$\mathrm{k}^{2}=\frac{2}{5} \mathrm{R}^{2}+(10 \mathrm{~cm})^{2}$
$=\frac{2}{5}(5)^{2}+100=10+100=110$
$\mathrm{k}=\sqrt{110} \mathrm{~cm}$
$\mathrm{x}=110$
28. 1

Sol. For two perpendicular vectors
$(a \hat{i}+b \hat{j}+\hat{k}) \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=0$
$2 \mathrm{a}-3 \mathrm{~b}+4=0$
On solving, $2 \mathrm{a}-3 \mathrm{~b}=-4$
Also given
$3 a+2 b=7$
We get $\mathrm{a}=1, \mathrm{~b}=2$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{x}}{2} \Rightarrow \mathrm{x}=\frac{2 \mathrm{a}}{\mathrm{b}}=\frac{2 \times 1}{2}$
$\Rightarrow \quad \mathrm{x}=1$
29. 11

Sol. density of nuclei $=\frac{\text { mass of nuclei }}{\text { volume of nuclei }}$

$$
\begin{aligned}
& \rho=\frac{1.6 \times 10^{-27} \mathrm{~A}}{\frac{4}{3} \pi\left(1.5 \times 10^{-15}\right)^{3} \mathrm{~A}} \\
& =\frac{1.6 \times 10^{-27}}{14.14 \times 10^{-45}}=0.113 \times 10^{18} \\
& \rho_{\mathrm{w}}=10^{3}
\end{aligned}
$$

Hence $\frac{\rho}{\rho_{w}}=11.31 \times 10^{13}$
30. 2

Sol.

$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{\mathrm{qE}}{\mathrm{m}}=\left(2 \times 10^{11}\right)\left(1.8 \times 10^{3}\right)$
$=3.6 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
Time to cross plates $=\frac{\mathrm{d}}{\mathrm{v}}$
$t=\frac{0.10}{3 \times 10^{7}}$

$$
\begin{aligned}
& y=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2}\left(3.6 \times 10^{14}\right)\left(\frac{0.01}{9 \times 10^{14}}\right) \\
& =0.2 \times 0.01=0.002 \mathrm{~m}=2 \mathrm{~mm}
\end{aligned}
$$

CHEMISTRY

Section - A (Single Correct Answer)

31. A

Sol.

32. C

Sol. The rate of hydrolysis of alkyl chloride improves because of better Nucleophilicity of I^{-}.
33. C

Sol. According to Fajan's Rule,
A. $\mathrm{KF}>\mathrm{KI}-$ False ; LiF $>\mathrm{KF}-$ True
B. $\mathrm{KF}<\mathrm{KI}-$ True ; LiF $>\mathrm{KF}-$ True
C. $\mathrm{SnCl}_{4}>\mathrm{SnCl}_{2}-$ True; $\mathrm{CuCl}>\mathrm{NaCl}-$ True
D. $\mathrm{LiF}>\mathrm{KF}-$ True; $\mathrm{CuCl}<\mathrm{NaCl}-$ False
E. $\quad \mathrm{KF}<\mathrm{KI}-$ True ; $\mathrm{CuCl}>\mathrm{NaCl}-$ True
34. B

Sol. No option is matching the correct answer.
Order should be : $\mathrm{C}<\mathrm{A}<\mathrm{B}<\mathrm{D}$
35. C

Sol. $\mathrm{Cr}^{+2}:[\mathrm{Ar}], 3 \mathrm{~d}^{4}, 4 \mathrm{~s}^{0} \mathrm{n}=4, \mu=\sqrt{4(4+2)}=\sqrt{24}$ $=4.89 \mathrm{BM}$
$\mathrm{Mn}^{+2}:[\mathrm{Ar}], 3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{0} \mathrm{n}=5, \mu=\sqrt{5(5+2)}=\sqrt{35}$
$=5.91 \mathrm{BM}$
$\mathrm{V}^{+2}:[\mathrm{Ar}], 3 \mathrm{~d}^{3}, 4 \mathrm{~s}^{0} \mathrm{n}=3, \mu=\sqrt{3(3+2)}=\sqrt{15}$
$=3.87 \mathrm{BM}$
$\mathrm{Ti}^{+2}:[\mathrm{Ar}], 3 \mathrm{~d}^{2}, 4 \mathrm{~s}^{0} \mathrm{n}=2, \mu=\sqrt{2(2+2)}=\sqrt{8}$
$=2.82 \mathrm{BM}$
36. A

Sol. Reverberatory furnace : Used for roasting of Copper.

Electrolytic cell : For reactive metal : Al
Blast furnace : Hematite to Pig Iron
Zone Refining furnace: For semiconductors : Si
37. C

Sol. According to Henry Moseley $\sqrt{v} \alpha \mathrm{z}-\mathrm{b}$

So, $\mathrm{n}=\frac{1}{2}$
38. B

Sol.

Oxyacid having $\mathrm{P}-\mathrm{H}$ bond can reduce AgNO_{3} to Ag.
39. D

Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
Oxidation number of Co is +3 .
So primary valency is 3 .
It is an octahedral complex so secondary valency 6 or Co-ordination number 6.
40. D

Sol.

41. B

Sol.

42. A

Sol. Chlorophyll: Mg^{+2} complex
Soda ash : $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Dentistry, Ornamental work: CaSO_{4}
Used in white washing : $\mathrm{Ca}(\mathrm{OH})_{2}$
43. C

Sol. Statement I : For colloidal particles, the values of colligative properties are of small order as compared to values shown by true solutions at same concentration. : True
Statement II : For colloidal particles, the potential difference between the fixed layer and the diffused layer of same charges is called the electrokinetic potential or zeta potential. : True
44. A

Sol. $\mathrm{BeO}+2 \mathrm{NH}_{3}+4 \mathrm{HF} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}+\mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4} \xrightarrow{\Delta} \mathrm{BeF}_{2}+\mathrm{NH}_{4} \mathrm{~F}$
45. D

Sol.

$$
\xrightarrow[\Delta]{\mathrm{HBr}}
$$

46. D

Sol.

47. B

Sol. Ice $>$ Liquid water $>$ Impure water
Due to impurity extent of H -Bonding decreases.
48. A

Sol. Fact
49. A

Sol.

Vapour pressure (V.P.) of solvent is greater than vapour pressure (V.P.) of solution.
Only solvent freezes.
50. A

Sol. Fact

Section - B (Numerical Value)

51. 10

Sol. Buffer of HOAc and NaOAc
$\mathrm{pH}=\mathrm{pKa}+\log \frac{0.1}{0.01}$
$5=\mathrm{pKa}+1$
$\mathrm{pKa}=4$
$\mathrm{Ka}=10^{-4}$
$\mathrm{x}=10$
52. 180

Sol. $\mathrm{M}=\frac{5}{40} \times \frac{1000}{450}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\left(\frac{5}{40} \times \frac{1000}{450}\right) \times \mathrm{V}_{1}=0.1 \times 500$
$\mathrm{V}_{1}=180$
53. 492

Sol. $\frac{1}{\left(\lambda_{1}\right)_{P}}=R_{H} Z^{2}\left(\frac{1}{9}-\frac{1}{16}\right)$
$\frac{1}{\left(\lambda_{2}\right)_{\mathrm{P}}}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left(\frac{1}{9}-\frac{1}{25}\right)$
$\frac{\left(\lambda_{2}\right)_{\mathrm{P}}}{\left(\lambda_{1}\right)_{\mathrm{P}}}=\frac{\frac{7}{16 \times 9}}{\frac{16}{25 \times 9}}=\frac{25 \times 7}{16 \times 16}$

$$
\begin{aligned}
& \left(\lambda_{2}\right)_{\mathrm{P}}=\frac{25 \times 7}{16 \times 16} \times 720 \\
& \left(\lambda_{2}\right)_{\mathrm{P}}=492 \mathrm{~nm}
\end{aligned}
$$

54. 3

Sol. $\mathrm{A}: \mathrm{k}=\mathrm{Ae}^{-\frac{\mathrm{Ea}}{\mathrm{RT}}}$
As Ea increases k decreases.
B : Temperature coefficient $=\frac{\mathrm{K}_{\mathrm{T}+10}}{\mathrm{~K}_{\mathrm{T}}}$
C :

Option (C) is wrong. $\Delta \mathrm{k}$ may be greater or lesser depending on temperature.
$\mathrm{D}: \ln \mathrm{k}=\ln \mathrm{A}-\frac{\mathrm{Ea}}{\mathrm{RT}}$
55. 917

Sol. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}=1.33-\frac{0.059}{6} \log \frac{(0.1)^{2}}{\left(10^{-2}\right)\left(10^{-3}\right)^{14}}$
$\mathrm{E}=1.33-\frac{0.059}{6} \times 42=0.917$
$\mathrm{E}=917 \times 10^{-3}$
$\mathrm{x}=917$
56. 4

Sol. A : $\mathrm{Fe}_{0.93} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
$\mathrm{nf}=\left(3-\frac{200}{93}\right) \times 0.93$
$\mathrm{nf}=0.79$
B : $2 \mathrm{x}+(0.93-\mathrm{x}) \times 3=2$
$\mathrm{x}=0.79$
$\mathrm{Fe}^{2+}=0.79, \mathrm{Fe}^{3+}=0.21$
C: Fact
$\mathrm{D}: \% \mathrm{Fe}^{2+}=\frac{0.79}{0.93} \times 100=85 \% ; \mathrm{Fe}^{3+}=15 \%$
57. 7

Sol. $\mathrm{Co}^{2+}: 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{0}, \mathrm{Cl}^{-}: \mathrm{WFL}$
 1) 11, e

Configuration $\mathrm{e}^{4} \mathrm{t}_{2}^{3}: \mathrm{m}=4$
Number of unpaired electrons $=3$
So, answer $=7$
58. 2

Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
A: $\Delta \mathrm{G}\left(\mathrm{J} \mathrm{mol}^{-1}\right)=-25 \times 10^{3}+80 \times 300:-\mathrm{ve}$
B : $\Delta \mathrm{G}\left(\mathrm{J} \mathrm{mol}^{-1}\right)=-22 \times 10^{3}-40 \times 300:-\mathrm{ve}$
C : $\Delta \mathrm{G}\left(\mathrm{J} \mathrm{mol}^{-1}\right)=25 \times 10^{3}+300 \times 50:+\mathrm{ve}$
D : $\Delta \mathrm{G}\left(\mathrm{J} \mathrm{mol}^{-1}\right)=22 \times 10^{3}-20 \times 300:+\mathrm{ve}$
Processes C and D are non-spontaneous.
59. 25

Sol. Mol. wt. of $\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4} \mathrm{O}_{2}=112$
$\% \mathrm{~N}=\frac{28}{112} \times 100=25 \%$
60. 2

Sol. Benzylic and tertiary carbocations are stable.

MATHEMATICS

Section - A (Single Correct Answer)

61. C

Sol. Equation of Plane is
$=\left|\begin{array}{ccc}x-2 & y+3 & z-1 \\ -3 & 4 & -3 \\ 4 & -5 & 4\end{array}\right|=0$
$\mathrm{x}-\mathrm{z}-1=0$
Distance of $\mathrm{P}(7,-3,-4)$ from Plane is
$d=\left|\frac{7+4-1}{\sqrt{2}}\right|=5 \sqrt{2}$
62. B

Sol. $\lim _{\mathrm{t} \rightarrow 0}\left(1^{\operatorname{cosec}^{2} t}+2^{\operatorname{cosec}^{2} t}+\ldots \ldots+\mathrm{n}^{\operatorname{cosec}^{2} t}\right)^{\sin ^{2} t}$

$$
\begin{aligned}
& =\lim _{\mathrm{t} \rightarrow 0} \mathrm{n}\left(\left(\frac{1}{\mathrm{n}}\right)^{\operatorname{cosec}^{2} \mathrm{t}}+\left(\frac{2}{\mathrm{n}}\right)^{\operatorname{cosec}^{2} \mathrm{t}}+\ldots \ldots+1\right)^{\sin ^{2} \mathrm{t}} \\
& =\mathrm{n}
\end{aligned}
$$

63. A

Sol. $\overrightarrow{\mathrm{u}}=(1,-1,-2), \overrightarrow{\mathrm{v}}=(2,1,-1), \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=2$
$\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}=\overrightarrow{\mathrm{u}}+\lambda \overrightarrow{\mathrm{v}}$
Taking dot with $\overrightarrow{\mathrm{w}}$ in (1)
$\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})=\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{w}}+\lambda \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}$
$\Rightarrow 0=\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{w}}+2 \lambda$
Taking with \vec{v} in (1)
$\vec{v} \cdot(\vec{v} \times \vec{w})=\vec{u} \cdot \vec{v}+\lambda \vec{v} \cdot \vec{v}$
$\Rightarrow 0=(2-1+2)+\lambda(6)$
$\lambda=-\frac{1}{2}$
$\Rightarrow \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{w}}=-2 \lambda=1$
64. A

Sol. $\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}} \cdot{ }^{23} \mathrm{C}_{\mathrm{r}}=\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}} \cdot{ }^{23} \mathrm{C}_{23-\mathrm{r}}$
$={ }^{45} \mathrm{C}_{23}$
65. A

Sol. $\mathrm{y}^{2}=24 \mathrm{x}$
$a=6 x y=2$
$A B=t y=x+6 t^{2}$
$\mathrm{AB}=\mathrm{T}=\mathrm{S}_{1}$
$\mathrm{kx}+\mathrm{hy}=2 \mathrm{hk}$
From (1) and (2)
$\frac{\mathrm{k}}{1}=\frac{\mathrm{h}}{-\mathrm{t}}=\frac{2 \mathrm{hk}}{-6 \mathrm{t}^{2}}$
\Rightarrow then locus is $y^{2}=-3 x$
Therefore directrix is $4 x=3$
66. C

Sol. $x+y+z=1$
$2 x+N y+2 z=2$
$3 x+3 y+N z=3$

$$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & \mathrm{~N} & 2 \\
3 & 3 & \mathrm{~N}
\end{array}\right|
$$

$=(\mathrm{N}-2)(\mathrm{N}-3)$
For unique solution $\Delta \neq 0$
So $N \neq 2,3$
$\Rightarrow P($ system has unique solution $)=\frac{4}{6}$
So k $=4$
Therefore sum $=4+1+4+5+6=20$
67. C

Sol. $\tan ^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}}\right)$
$=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{3}$
68. B

Sol. Let P is $\overrightarrow{0}, Q$ is \vec{q} and R is \vec{r}
A is $\frac{2 \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}}}{3}, \mathrm{~B}$ is $\frac{2 \overrightarrow{\mathrm{r}}}{3}$ and C is $\frac{\overrightarrow{\mathrm{q}}}{3}$
Area of $\triangle \mathrm{PQR}$ is $=\frac{1}{2}|\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}}|$

Area of $\triangle \mathrm{ABC}$ is $\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$
$\overrightarrow{\mathrm{AB}}=\frac{\overrightarrow{\mathrm{r}}-2 \overrightarrow{\mathrm{q}}}{3}, \overrightarrow{\mathrm{AC}}=\frac{-\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{q}}}{3}$
Area of $\triangle \mathrm{ABC}=\frac{1}{6}|\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}}|$
$\frac{\text { Area }(\triangle \mathrm{PQR})}{\text { Area }(\triangle \mathrm{ABC})}=3$
69. D

Sol. $A^{2}+B=A^{2} B$
$\left(A^{2}-1\right)(B-I)=I$
$A^{2}+B=A^{2} B$
$\mathrm{A}^{2}(\mathrm{~B}-\mathrm{I})=\mathrm{B}$
$\mathrm{A}^{2}=\mathrm{B}(\mathrm{B}-\mathrm{I})^{-1}$
$\mathrm{A}^{2}=\mathrm{B}\left(\mathrm{A}^{2}-\mathrm{I}\right)$
$\mathrm{A}^{2}=\mathrm{BA}^{2}-\mathrm{B}$
$A^{2}+B=B A^{2}$
$\mathrm{A}^{2} \mathrm{~B}=\mathrm{BA}^{2}$
70. A

Sol. $\frac{d y}{d x}=\frac{1-x y}{x^{3}}=\frac{1}{x^{3}}-\frac{y}{x^{2}}$
$\frac{d y}{d x}+\frac{y}{x^{2}}=\frac{1}{x^{3}}$
If $=\mathrm{e}^{\int \frac{1}{\mathrm{x}^{2}} \mathrm{dx}}=\mathrm{e}^{-\frac{1}{\mathrm{x}}}$
$y \cdot e^{-\frac{1}{x}}=-\int e^{t} \cdot \frac{1}{x^{3}} d x \quad\left(\right.$ put $\left.-\frac{1}{x}=t\right)$
$y \cdot e^{-\frac{1}{x}}=-\int e^{t} \cdot t d t$
$\mathrm{t}=\frac{1}{\mathrm{x}}+1+\mathrm{Ce}^{\frac{1}{x}}$
Where C is constant
Put $\mathrm{x}=\frac{1}{2}$
$3-\mathrm{e}=2+1+\mathrm{Ce}^{2}$
$C=-\frac{1}{e}$
$y(1)=1$
71. C

Sol.

$y^{2}+4 x=4$
$y^{2}=-4(x-1)$

$$
A=\int_{-4}^{2}\left(\frac{4-y^{2}}{4}-\frac{y-2}{2}\right) d y=9
$$

72. B

Sol. $\Delta=0=\left|\begin{array}{ccc}\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right|$

$$
\Rightarrow \alpha^{2}(c-b)-\alpha(c-a)+(b-a)=0
$$

It is singular when $\alpha=1$
$\frac{(a-c)^{2}}{(b-a)(c-b)}+\frac{(b-a)^{2}}{(a-c)(c-b)}+\frac{(c-b)^{2}}{(a-c)(b-a)}$
$\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{(a-b)(b-c)(c-a)}$
$=3 \frac{(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}=3$
73. C

Sol. Equation of line
$\frac{x+1}{3}=\frac{y-9}{-4}=\frac{z+16}{12}$
G.P. on line $(3 \lambda-1,-4 \lambda+9,12 \lambda-16)$
point of intersection of line \& plane
$6 \lambda-2-12 \lambda+27-12 \lambda+16=5$
$\lambda=2$
Point (5, 1, 8)
Distance $=\sqrt{36+64+576}=26$
74. A

Sol. $\mathrm{pq}^{2}=\log _{\mathrm{x}} \lambda$
$\mathrm{qr}=\log _{\mathrm{y}} \lambda$
$\mathrm{p}^{2} \mathrm{r}=\log _{\mathrm{z}} \lambda$
$\log _{y} x=\frac{q r}{p q^{2}} \frac{r}{p q}$

3, $\frac{3 \mathrm{r}}{\mathrm{pq}}, \frac{3 \mathrm{p}^{2}}{\mathrm{q}}, \frac{7 \mathrm{q}^{2}}{\mathrm{pr}}$ in A.P.
$\frac{3 \mathrm{r}}{\mathrm{pq}}-3=\frac{1}{2}$
$\mathrm{r}=\frac{7}{6} \mathrm{pq}$
$\mathrm{r}=\mathrm{pq}+1$
$p q=6$
$\mathrm{r}=7$
$\frac{3 p^{2}}{q}=4$
After solving $\mathrm{p}=2$ and $\mathrm{q}=3$
75. B

Sol. $(1-\sqrt{3} \mathrm{i})^{200}=2^{199}(\mathrm{p}+\mathrm{iq})$

$$
\begin{aligned}
& 2^{200}\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{200}=2^{199}(p+i q) \\
& 2\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=p+i q \\
& p=-1, q=-\sqrt{3} \\
& \alpha=p+q+q^{2}=2-\sqrt{3} \\
& \beta=p-q+q^{2}=2+\sqrt{3} \\
& \alpha+\beta=4 \\
& \alpha \cdot \beta=1
\end{aligned}
$$

$$
\text { equation } x^{2}-4 x+1=0
$$

76. D

Sol. Reflexive : $(a, a) \Rightarrow \operatorname{gcd}$ of $(a, a)=1$
Which is not true for every $a \in Z$.
Symmetric :
Take $\mathrm{a}=2, \mathrm{~b}=1 \Rightarrow \operatorname{gcd}(2,1)=1$
Also $2 \mathrm{a}=4 \neq \mathrm{b}$
Now when $\mathrm{a}=1, \mathrm{~b}=2 \Rightarrow \operatorname{gcd}(1,2)=1$
Also now $2 \mathrm{a}=2=\mathrm{b}$
Hence $\mathrm{a}=2 \mathrm{~b}$
$\Rightarrow \mathrm{R}$ is not Symmetric
Transitive:
Let $\mathrm{a}=14, \mathrm{~b}=19, \mathrm{c}=21$
$\operatorname{gcd}(a, b)=1$
$\operatorname{gcd}(b, c)=1$
$\operatorname{gcd}(a, c)=7$
Hence not transitive
$\Rightarrow R$ is neither symmetric nor transitive.
77. A

Sol. The compound statement
$(\sim(\mathrm{P} \wedge \mathrm{Q})) \vee((\sim \mathrm{P}) \wedge \mathrm{Q}) \Rightarrow((\sim \mathrm{P}) \wedge(\sim \mathrm{Q})) \quad$ is equivalent to
(1) $\quad((\sim \mathrm{P}) \vee \mathrm{Q}) \wedge((\sim \mathrm{Q}) \vee \mathrm{P})$
(2) $\quad(\sim Q) \vee P$
(3) $\quad((\sim \mathrm{P}) \vee \mathrm{Q}) \wedge(\sim \mathrm{Q})$
(4) $\quad(\sim P) \vee Q$
78. B

Sol. Continuity of $f(x): f\left(0^{+}\right)=h^{2} \cdot \sin \frac{1}{h}=0$
$f\left(0^{-}\right)=(-h)^{2} \cdot \sin \left(\frac{-1}{h}\right)=0$
$f(0)=0$
$f(x)$ is continuous
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\frac{h^{2} \cdot \sin \left(\frac{1}{h}\right)-0}{h}=0$
$f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\frac{h^{2} \cdot \sin \left(\frac{1}{-h}\right)-0}{-h}=0$
$f(x)$ is differentiable.
$f^{\prime}(x)=2 x \cdot \sin \left(\frac{1}{x}\right)+x^{2} \cdot \cos \left(\frac{1}{x}\right) \cdot \frac{-1}{x^{2}}$
$f^{\prime}(x)=\left\{\begin{array}{cl}2 x \cdot \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$
$\Rightarrow f^{\prime}(x)$ is not continuous (as $\cos \left(\frac{1}{x}\right)$ is hight oscillating at $\mathrm{x}=0$)
79. D

Sol. $x^{2}-4 x+[x]+3=x[x]$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+3=\mathrm{x}[\mathrm{x}]-[\mathrm{x}]$
$\Rightarrow(x-1)(x-3)=[x] \cdot(x-1)$
$\Rightarrow \mathrm{x}=1$ or $\mathrm{x}-3=[\mathrm{x}]$
$\Rightarrow \mathrm{x}-[\mathrm{x}]=3$
$\Rightarrow\{\mathrm{x}\}=3$ (Not Possible)
Only one solution $x=1$ in $(-\infty, \infty)$
80. C

Sol. $\Omega=$ sample space
$\mathrm{A}=$ be an event
If $\mathrm{P}(\mathrm{A})=0 \Rightarrow \mathrm{~A}=\phi$
If $\mathrm{P}(\mathrm{A})=1 \Rightarrow \mathrm{~A}=\Omega$
Then both statement are true

Section - B (Numerical Value)

81. 118

Sol.

Equation of normal of ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$ at any point $\mathrm{P}(6 \cos \theta, 4 \sin \theta)$ is
$3 \sec \theta x-2 \operatorname{cosec} \theta y=10$ this normal is also the normal of the circle passing through the point (2, 0) So,
$6 \sec \theta=10$ or $\sin \theta=\frac{4}{5}$ so point $\mathrm{P}=\left(\frac{18}{5}, \frac{16}{5}\right)$
So the largest radius of circle
$r=\frac{\sqrt{320}}{5}$

So the equation of circle $(x-2)^{2}+y^{2}=\frac{64}{5}$
Passing it through $(1, \alpha)$
Then $\alpha^{2}=\frac{59}{5}$
$10 \alpha^{2}=118$
82. 1012

Sol. using result
$\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{r}^{2}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\mathrm{n}(\mathrm{n}+1) \cdot 2^{\mathrm{n}-2}$
Then $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^{2}{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times 2024 \times 2^{2021}$
$=2023 \times \alpha \times 2^{2022}$ So,
$\Rightarrow \alpha=1012$
83. 22

Sol. $12 \int_{0}^{3}\left|x^{2}-3 x+2\right| d x$
$=12 \int_{0}^{3}\left(\left.\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4} \right\rvert\, d x\right.$
If $\mathrm{x}-\frac{3}{2}=\mathrm{t}$
$\mathrm{dx}=\mathrm{dt}$
$=24 \int_{0}^{3 / 2}\left|\mathrm{t}^{2}-\frac{1}{4}\right| \mathrm{dt}$
$=24\left[-\int_{0}^{1 / 2}\left(\mathrm{t}^{2}-\frac{1}{4}\right) \mathrm{dt}+\int_{1 / 2}^{3 / 2}\left(\mathrm{t}^{2}-\frac{1}{4}\right) \mathrm{dt}\right]=22$
84. 60

Sol. Even digits occupy at even places
$\frac{4!}{2!2!} \times \frac{5!}{2!3!}=60$
85. 5

Sol. $|x|^{2}-2|x|+|\lambda-3|=0$
$|x|^{2}-2|x|+|\lambda-3|-1=0$
$(|x|-1)^{2}+|\lambda-3|=1$
At $\lambda=3, x=0$ and 2
at $\lambda=4$ or 2 , then
$\mathrm{x}=1$ or -1
So maximum value of $x+\lambda=5$
86. 546

Sol. For at most two language courses
$={ }^{5} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{4}+{ }^{7} \mathrm{C}_{5}=546$
87. 7

Sol. Equation of tangent at point $\mathrm{P}(4 \cos \theta, 3 \sin \theta)$ is $\frac{\mathrm{x} \cos \theta}{4}+\frac{\mathrm{y} \sin \theta}{3}=1$ So A is $(4 \sec \theta, 0)$ and point B is $(0,3 \operatorname{cosec} \theta)$
Length $\mathbf{A B}=\sqrt{16 \sec ^{2} \theta+9 \operatorname{cosec}^{2} \theta}$

$$
=\sqrt{25+16 \tan ^{2} \theta+9 \cot ^{2} \theta} \geq 7
$$

88. 2

Sol. $I=\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} \mathrm{dx}$
Using $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
$I=\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$
Adding (1) and (2)

$$
2 \mathrm{I}=\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}
$$

$\mathrm{I}=2$
89. 14

Sol. Shortest distance between the lines

$$
\left.\begin{aligned}
& =\frac{\left|\begin{array}{ccc}
4 & 2 & -14 \\
3 & 2 & 2 \\
3 & -2 & 0
\end{array}\right|}{\left|\begin{array}{|cc}
\hat{i} & \hat{j} \\
\hat{k}
\end{array}\right|}\left|\begin{array}{|cc|}
3 & 2 \\
3 \\
3 & -2
\end{array}\right|
\end{aligned} \right\rvert\,
$$

90. 12

Sol. $\mathrm{T}_{4}=500$ where $\mathrm{a}=$ first term,
r common ratio $=\frac{1}{\mathrm{~m}}, \mathrm{~m} \in \mathrm{~N}$
$\mathrm{ar}^{3}=500$
$\frac{\mathrm{a}}{\mathrm{m}^{3}}=500$
$\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}=\mathrm{ar}^{\mathrm{n}-1}$
$S_{6}>S_{5}+1$
and $\mathrm{S}_{7}-\mathrm{S}_{6}<\frac{1}{2}$
$\mathrm{S}_{6}-\mathrm{S}_{5}>1 \quad \frac{\mathrm{a}}{\mathrm{m}^{6}}<\frac{1}{2}$
$a r^{5}>1$
$\mathrm{m}^{3}>10^{3}$
$\frac{500}{\mathrm{~m}^{2}}>1 \quad \mathrm{~m}>10$
$\mathrm{m}^{2}<500$
From (1) and (2) m=11, 12, 13...... , 22
So number of possible values of m is 12

